Publications by authors named "Marc Bachofner"

Fibroblast growth factors (FGFs) are key regulators of the remarkable regenerative capacity of the liver. Mice lacking FGF receptors 1 and 2 (Fgfr1 and Fgfr2) in hepatocytes are hypersensitive to cytotoxic injury during liver regeneration. Using these mice as a model for impaired liver regeneration, we identified a critical role for the ubiquitin ligase Uhrf2 in protecting hepatocytes from bile acid accumulation during liver regeneration.

View Article and Find Full Text PDF

The liver's remarkable regenerative capacity is orchestrated by several growth factors and cytokines. Fibroblast growth factor receptor 3 (Fgfr3) is frequently overexpressed in hepatocellular carcinoma and promotes cancer aggressiveness, whereas its role in liver homeostasis, repair and regeneration is unknown. We show here that Fgfr3 is expressed by hepatocytes in the healthy liver.

View Article and Find Full Text PDF

Much of our understanding of chromosome segregation is based on cell culture systems. Here, we examine the importance of the tissue environment for chromosome segregation by comparing chromosome segregation fidelity across several primary cell types in native and nonnative contexts. We discover that epithelial cells have increased chromosome missegregation outside of their native tissues.

View Article and Find Full Text PDF

The liver is the only organ in mammals that fully regenerates even after major injury. To identify orchestrators of this regenerative response, we performed quantitative large-scale proteomics analysis of cytoplasmic and nuclear fractions from normal versus regenerating mouse liver. Proteins of the ubiquitin-proteasome pathway were rapidly upregulated after two-third hepatectomy, with the ubiquitin ligase Nedd4-1 being a top hit.

View Article and Find Full Text PDF

Objective: Fibroblast growth factors (Fgfs) are key orchestrators of development, and a role of Fgfs in tissue repair is emerging. Here we studied the consequences of inducible loss of Fgf receptor (Fgfr) 4, the major Fgf receptor (Fgfr) on hepatocytes, alone or in combination with Fgfr1 and Fgfr2, for liver regeneration after PH.

Design: We used siRNA delivered via nanoparticles combined with liver-specific gene knockout to study Fgfr function in liver regeneration.

View Article and Find Full Text PDF

The liver has a unique regenerative capability, which involves extensive remodelling of cell-cell and cell-matrix contacts. Here we study the role of integrins in mouse liver regeneration using Cre/loxP-mediated gene deletion or intravenous delivery of β1-integrin siRNA formulated into nanoparticles that predominantly target hepatocytes. We show that although short-term loss of β1-integrin has no obvious consequences for normal livers, partial hepatectomy leads to severe liver necrosis and reduced hepatocyte proliferation.

View Article and Find Full Text PDF