Publications by authors named "Marc Auffret"

The rumen microbiome is the focus of a growing body of research, mostly based on investigation of rumen fluid samples collected once from each animal. Exploring the temporal stability of rumen microbiome profiles is imperative, as it enables evaluating the reliability of findings obtained through single-timepoint sampling. We explored the temporal stability of rumen microbiomes considering taxonomic and functional aspects across the 7-month growing-finishing phase spanning 6 timepoints.

View Article and Find Full Text PDF

Understanding the relationships between social stress and the gastrointestinal microbiota, and how they influence host health and performance is expected to have many scientific and commercial implementations in different species, including identification and improvement of challenges to animal welfare and health. In particular, the study of the stress impact on the gastrointestinal microbiota of pigs may be of interest as a model for human health. A porcine stress model based on repeated regrouping and reduced space allowance during the last 4 weeks of the finishing period was developed to identify stress-induced changes in the gut microbiome composition.

View Article and Find Full Text PDF

The ratio of forage to concentrate in cattle feeding has a major influence on the composition of the microbiota in the rumen and on the mass of methane produced. Using methane measurements and microbiota data from 26 cattle we aimed to investigate the relationships between microbial relative abundances and methane emissions, and identify potential biomarkers, in animals fed two extreme diets - a poor quality fresh cut grass diet (GRASS) or a high concentrate total mixed ration (TMR). Direct comparisons of the effects of such extreme diets on the composition of rumen microbiota have rarely been studied.

View Article and Find Full Text PDF

Background: Healthier ruminant products can be achieved by adequate manipulation of the rumen microbiota to increase the flux of beneficial fatty acids reaching host tissues. Genomic selection to modify the microbiome function provides a permanent and accumulative solution, which may have also favourable consequences in other traits of interest (e.g.

View Article and Find Full Text PDF

Our study provides substantial evidence that the host genome affects the comprehensive function of the microbiome in the rumen of bovines. Of 1,107/225/1,141 rumen microbial genera/metagenome assembled uncultured genomes (RUGs)/genes identified from whole metagenomics sequencing, 194/14/337 had significant host genomic effects (heritabilities ranging from 0.13 to 0.

View Article and Find Full Text PDF

Milk products are an important component of human diets, with beneficial effects for human health, but also one of the major sources of nutritionally undesirable saturated fatty acids (SFA). Recent discoveries showing the importance of the rumen microbiome on dairy cattle health, metabolism and performance highlight that milk composition, and potentially milk SFA content, may also be associated with microorganisms, their genes and their activities. Understanding these mechanisms can be used for the development of cost-effective strategies for the production of milk with less SFA.

View Article and Find Full Text PDF

In this study, cattle offered one high concentrate diet (92% concentrate-8% straw) during two independent trials allowed us to classify 72 animals comprising of two cattle breeds as "Low" or "High" feed efficiency groups. Digesta samples were taken from individual beef cattle at the abattoir. After metagenomic sequencing, the rumen microbiome composition and genes were determined.

View Article and Find Full Text PDF

A network analysis including relative abundances of all ruminal microbial genera (archaea, bacteria, fungi, and protists) and their genes was performed to improve our understanding of how the interactions within the ruminal microbiome affects methane emissions (CH). Metagenomics and CH data were available from 63 bovines of a two-breed rotational cross, offered two basal diets. Co-abundance network analysis revealed 10 clusters of functional niches.

View Article and Find Full Text PDF

Background: Dietary intake is known to be a driver of microbial community dynamics in ruminants. Beef cattle go through a finishing phase that typically includes very high concentrate ratios in their feed, with consequent effects on rumen metabolism including methane production. This longitudinal study was designed to measure dynamics of the rumen microbial community in response to the introduction of high concentrate diets fed to beef cattle during the finishing period.

View Article and Find Full Text PDF

The rumen microbiome is essential for the biological processes involved in the conversion of feed into nutrients that can be utilized by the host animal. In the present research, the influence of the rumen microbiome on feed conversion efficiency, growth rate, and appetite of beef cattle was investigated using metagenomic data. Our aim was to explore the associations between microbial genes and functional pathways, to shed light on the influence of bacterial enzyme expression on host phenotypes.

View Article and Find Full Text PDF

Ruminants provide essential nutrition for billions of people worldwide. The rumen is a specialized stomach that is adapted to the breakdown of plant-derived complex polysaccharides. The genomes of the rumen microbiota encode thousands of enzymes adapted to digestion of the plant matter that dominates the ruminant diet.

View Article and Find Full Text PDF

Animal manures are a valued source of nutrients for crop production. They frequently do, however, contain zoonotic pathogens including a wide range of viruses. Ideally, manures would be treated prior to land application, reducing the burden of zoonotic viruses, and thus the potential for transmission to adjacent water resources or crops intended for human or animal consumption.

View Article and Find Full Text PDF

Motivation: Metagenomics is a powerful tool for assaying the DNA from every genome present in an environment. Recent advances in bioinformatics have enabled the rapid assembly of near-complete metagenome-assembled genomes (MAGs), and there is a need for reproducible pipelines that can annotate and characterize thousands of genomes simultaneously, to enable identification and functional characterization.

Results: Here we present MAGpy, a scalable and reproducible pipeline that takes multiple genome assemblies as FASTA and compares them to several public databases, checks quality, suggests a taxonomy and draws a phylogenetic tree.

View Article and Find Full Text PDF

The use of biomarkers for feed conversion efficiency (FCE), such as Nitrogen isotopic discrimination (ΔN), facilitates easier measurement and may be useful in breeding strategies. However, we need to better understand the relationship between FCE and ΔN, particularly the effects of differences in the composition of liveweight gain and rumen N metabolism. Alongside measurements of FCE and ΔN, we estimated changes in body composition and used dietary treatments with and without nitrates, and rumen metagenomics to explore these effects.

View Article and Find Full Text PDF

The cow rumen is adapted for the breakdown of plant material into energy and nutrients, a task largely performed by enzymes encoded by the rumen microbiome. Here we present 913 draft bacterial and archaeal genomes assembled from over 800 Gb of rumen metagenomic sequence data derived from 43 Scottish cattle, using both metagenomic binning and Hi-C-based proximity-guided assembly. Most of these genomes represent previously unsequenced strains and species.

View Article and Find Full Text PDF

Previous shotgun metagenomic analyses of ruminal digesta identified some microbial information that might be useful as biomarkers to select cattle that emit less methane (CH), which is a potent greenhouse gas. It is known that methane production (g/kgDMI) and to an extent the microbial community is heritable and therefore biomarkers can offer a method of selecting cattle for low methane emitting phenotypes. In this study a wider range of cattle, varying in breed and diet, was investigated to determine microbial communities and genetic markers associated with high/low CH emissions.

View Article and Find Full Text PDF

Background: The emergence and spread of antimicrobial resistance is the most urgent current threat to human and animal health. An improved understanding of the abundance of antimicrobial resistance genes and genes associated with microbial colonisation and pathogenicity in the animal gut will have a major role in reducing the contribution of animal production to this problem. Here, the influence of diet on the ruminal resistome and abundance of pathogenicity genes was assessed in ruminal digesta samples taken from 50 antibiotic-free beef cattle, comprising four cattle breeds receiving two diets containing different proportions of concentrate.

View Article and Find Full Text PDF

Rising global temperatures may increase the rates of soil organic matter decomposition by heterotrophic microorganisms, potentially accelerating climate change further by releasing additional carbon dioxide (CO2) to the atmosphere. However, the possibility that microbial community responses to prolonged warming may modify the temperature sensitivity of soil respiration creates large uncertainty in the strength of this positive feedback. Both compensatory responses (decreasing temperature sensitivity of soil respiration in the long-term) and enhancing responses (increasing temperature sensitivity) have been reported, but the mechanisms underlying these responses are poorly understood.

View Article and Find Full Text PDF

A bacterial consortium (Mix3) composed of microorganisms originating from different environments (soils and wastewater) was obtained after enrichment in the presence of a mixture of 16 hydrocarbons, gasoline, and diesel oil additives. After addition of the mixture, the development of the microbial composition of Mix3 was monitored at three different times (35, 113, and 222 days) using fingerprinting method and dominant bacterial species were identified. In parallel, 14 bacteria were isolated after 113 days and identified.

View Article and Find Full Text PDF

Soils store about four times as much carbon as plant biomass, and soil microbial respiration releases about 60 petagrams of carbon per year to the atmosphere as carbon dioxide. Short-term experiments have shown that soil microbial respiration increases exponentially with temperature. This information has been incorporated into soil carbon and Earth-system models, which suggest that warming-induced increases in carbon dioxide release from soils represent an important positive feedback loop that could influence twenty-first-century climate change.

View Article and Find Full Text PDF

A variety of factors affecting water quality in recirculating aquaculture systems (RAS) are associated with the occurrence of off-flavours. In this study, we report the impact of water quality on the bacterial diversity and the occurrence of the geosmin-synthesis gene (geoA) in two RAS units operated for 252 days. Unit 2 displayed a higher level of turbidity and phosphate, which affected the fresh water quality compared with unit 1.

View Article and Find Full Text PDF

Geosmin and 2-methylisoborneol (MIB) have been associated with off-flavour problems in fish and seafood products, generating a strong negative impact for aquaculture industries. Although most of the producers of geosmin and MIB have been identified as Streptomyces species or cyanobacteria, Streptomyces spp. are thought to be responsible for the synthesis of these compounds in indoor recirculating aquaculture systems (RAS).

View Article and Find Full Text PDF

Two strains, identified as Rhodococcus wratislaviensis IFP 2016 and Rhodococcus aetherivorans IFP 2017, were isolated from a microbial consortium that degraded 15 petroleum compounds or additives when provided in a mixture containing 16 compounds (benzene, toluene, ethylbenzene, m-xylene, p-xylene, o-xylene, octane, hexadecane, 2,2,4-trimethylpentane [isooctane], cyclohexane, cyclohexanol, naphthalene, methyl tert-butyl ether [MTBE], ethyl tert-butyl ether [ETBE], tert-butyl alcohol [TBA], and 2-ethylhexyl nitrate [2-EHN]). The strains had broad degradation capacities toward the compounds, including the more recalcitrant ones, MTBE, ETBE, isooctane, cyclohexane, and 2-EHN. R.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: