Understanding the development of the human brain in relation with evolution is an important frontier field in developmental biology. In particular, investigating the mechanisms underlying the greatly increased relative size and complexity of the cerebral cortex, the seat of our enhanced cognitive abilities, remains a fascinating yet largely unsolved question. Though many advances in our understanding have been gained from the study of animal models, as well as human genetics and embryology, large gaps remain in our knowledge of the molecular mechanisms that control human cortical development.
View Article and Find Full Text PDFA core structural and functional motif of the vertebrate central nervous system is discrete clusters of neurons or 'nuclei'. Yet the developmental mechanisms underlying this fundamental mode of organisation are largely unknown. We have previously shown that the assembly of motor neurons into nuclei depends on cadherin-mediated adhesion.
View Article and Find Full Text PDFNeuronal nuclei are prominent, evolutionarily conserved features of vertebrate central nervous system (CNS) organization. Nuclei are clusters of soma of functionally related neurons and are located in highly stereotyped positions. Establishment of this CNS topography is critical to neural circuit assembly.
View Article and Find Full Text PDF