Publications by authors named "Marc Andre Meyers"

Unlabelled: Considerable viscoelasticity and strain-rate sensitivity are a characteristic of α-keratin fibers, which can be considered a biopolymer. The understanding of viscoelasticity is an important part of the knowledge of the overall mechanical properties of these biological materials. Here, horse and human hairs are examined to analyze the sources of this response.

View Article and Find Full Text PDF

The understanding of the mechanical behavior of hair under various conditions broadens our knowledge in biological materials science and contributes to the cosmetic industry. The hierarchical organization of hair is studied from the intermediate filament to the structural levels. The effects of strain rate, relative humidity, and temperature are evaluated.

View Article and Find Full Text PDF

Unlabelled: Flight feathers are unique among a variety of keratinous appendages in that they are lightweight, stiff and strong. They are designed to withstand aerodynamic forces, but their morphology and structure have been oversimplified and thus understudied historically. Here we present an investigation of the shaft from seagull primary feathers, elucidate the hierarchical fibrous and porous structure along the shaft length, and correlate the tensile and nanomechanical properties to the fiber orientation.

View Article and Find Full Text PDF

Only seldom are square/rectangular shapes found in nature. One notable exception is the bird feather rachis, which raises the question: why is the proximal base round but the distal end square? Herein, it is uncovered that, given the same area, square cross sections show higher bending rigidity and are superior in maintaining the original shape, whereas circular sections ovalize upon flexing. This circular-to-square shape change increases the ability of the flight feathers to resist flexure while minimizes the weight along the shaft length.

View Article and Find Full Text PDF

The interlamellar organic layer plays a key role in establishing the tensile mechanical response of nacre, while changing the compressive response in only a marginal manner. We conduct observations on the epithelial layer of the abalone foot in direct contact with the extrapallial layer where the deposition process takes place and identify cilia, microvilli, and secretory cells which determine the deposition of chitin to form the interlamellar organic layer. On the basis of these observations we propose a mechanism for the deposition of interlamellar organic layers.

View Article and Find Full Text PDF

Otoliths are calcium carbonate biominerals in the inner ear of vertebrates; they play a role in balance, movement, and sound perception. Two types of otoliths in freshwater carp are investigated using nano- and micro-indentation: asteriscus and lapillus. The hardness, modulus, and creep of asteriscus (vaterite crystals) and lapillus (aragonite crystals) are compared.

View Article and Find Full Text PDF

Spider silk is extraordinarily strong, mollusk shells and bone are tough, and porcupine quills and feathers resist buckling. How are these notable properties achieved? The building blocks of the materials listed above are primarily minerals and biopolymers, mostly in combination; the first weak in tension and the second weak in compression. The intricate and ingenious hierarchical structures are responsible for the outstanding performance of each material.

View Article and Find Full Text PDF

The shear strength of the interface between tiles of aragonite in the nacre of red abalone Haliotis rufescens was investigated through mechanical tensile and shear tests. Dog-bone shaped samples were used to determine the tensile strength of nacre when loaded parallel to the plane of growth; the mean strength was 65 MPa. Shear tests were conducted on a special fixture with a shear gap of 200 microm, approximately 100 microm narrower than the spacing between mesolayers.

View Article and Find Full Text PDF

Introduction: Orthodontic mini-implants are a potential source of metallic ions to the human body because of the corrosion of titanium (Ti) alloy in body fluids. The purpose of this study was to gauge the concentration of Ti, aluminum (Al), and vanadium (V), as a function of time, in the kidneys, livers, and lungs of rabbits that had Ti-6Al-4V alloy orthodontic mini-implants placed in their tibia.

Methods: Twenty-three New Zealand rabbits were randomly divided into 4 groups: control, 1 week, 4 weeks, and 12 weeks.

View Article and Find Full Text PDF

The structure and mechanical properties of the exoskeleton (cuticle) of the sheep crab (Loxorhynchus grandis) were investigated. The crab exoskeleton is a natural composite consisting of highly mineralized chitin-protein fibers arranged in a twisted plywood or Bouligand pattern. There is a high density of pore canal tubules in the direction normal to the surface.

View Article and Find Full Text PDF

The nacreous portion of the abalone shell is composed of calcium carbonate crystals interleaved with layers of viscoelastic proteins. The resulting structure yields unique mechanical properties. In this study, we focus on the thin viscoelastic layers between the tiles and on their role on the mechanical properties of the shell.

View Article and Find Full Text PDF

The process of mineral formation following periods of growth interruption (growth bands) is described. Flat pearl implantation as well as a new trepanning method are used to observe the transitory phases of calcium carbonate which nucleate and grow during this process. An initial random nucleation of the aragonite polymorph is observed followed by a transition towards spherulitic growth.

View Article and Find Full Text PDF