Multiple non-targeted analysis tools were used to look for a broad range of possible chemical contaminants present in surface and drinking water using liquid chromatography separation and high-resolution mass spectrometry detection, including both quadrupole time of flight (Q-ToF) and Orbitrap instruments. Two chromatographic techniques were evaluated on an LC-Q-ToF with electrospray ionization in both positive and negative modes: (1) the traditionally used reverse phase C18 and (2) the hydrophilic interaction liquid chromatography (HILIC) aimed to capture more polar contaminants that may be present in water. Multiple ionization modes were evaluated with an LC-Orbitrap, including electrospray (ESI) and atmospheric pressure chemical ionization (APCI), also in both positive and negative modes.
View Article and Find Full Text PDFJ Environ Prot (Irvine, Calif)
December 2023
Hester-Dendy (HD) multi-plate samplers have been widely used by state and federal government agencies for bioassessment of water quality through use of macroinvertebrate community data. To help guide remediation and restoration efforts at the Niagara River Great Lakes Area of Concern site, a multi-agency study was conducted in 2014 to assess the contribution of seven major urban tributaries on the US side of the river toward the impairment of the Niagara River. As part of this study, macroinvertebrate communities were sampled using two co-located versions of HD samplers: one version used by the New York State Department of Environmental Conservation (NYSDEC) and another by the US Environmental Protection Agency Office of Research and Development.
View Article and Find Full Text PDFWastewater is a source for many contaminants of emerging concern (CECs), and surface waters receiving wastewater discharge often serve as source water for downstream drinking water treatment plants. Nontargeted analysis and suspect screening methods were used to characterize chemicals in residence-time-weighted grab samples and companion polar organic chemical integrative samplers (POCIS) collected on three separate hydrologic sampling events along a surface water flow path representative of water reuse. The goal of this work was to examine the fate of CECs along the study flow path as water is transported from wastewater effluent through drinking water treatment.
View Article and Find Full Text PDFAdding new unit operations to drinking water treatment systems requires consideration of not only efficacy for its design purpose but also costs, water quality characteristics, impact on overall regulatory compliance, and impact of other treatment unit operations. Here, pilot study results for ion exchange (IX) and granular activated carbon (GAC) are presented for a utility with both per- and polyfluoroalkyl substances (PFAS) and volatile organic contaminant removal needs. Specifically, the impact of upstream air stripping and phosphate addition on PFAS treatment performance was evaluated.
View Article and Find Full Text PDFTetragnathid spiders have been used as sentinels to study the biotransport of contaminants between aquatic and terrestrial environments because a significant proportion of their diet consists of adult aquatic insects. A key knowledge gap in assessing tetragnathid spiders as sentinels is understanding the consistency of the year-to-year relationship between contaminant concentrations in spiders and sediment, water, and macroinvertebrates. We collected five years of data over a seven-year investigation at a PCB contaminated-sediment site to investigate if concentrations in spiders were consistently correlated with concentrations in sediment, water, and aquatic macroinvertebrates.
View Article and Find Full Text PDFResearch on per- and polyfluoroalkyl substances (PFAS) frequently incorporates organofluorine measurements, particularly because they could support a class-based approach to regulation. However, standardized methods for organofluorine analysis in a broad suite of matrices are currently unavailable, including a method for extractable organofluorine (EOF) measured using combustion ion chromatography (CIC). Here, we report the results of an international interlaboratory comparison.
View Article and Find Full Text PDFThe assessment of a cap for remediation of sediments requires long-term monitoring because of the slow migration of contaminants in porous media. In this study, coring and passive sampling tools were used to assess the transport and degradation of polycyclic aromatic hydrocarbons (PAHs) in an amended cap (sand + Organoclay® PM-199) in the Grand Calumet River (Indiana, USA) during four sampling events from 2012 to 2019. Measurements of three PAHs (phenanthrene (Phe), pyrene (Pyr) and benzo[a]pyrene (BaP), representing low, medium, and high molecular weight compounds, respectively) showed a difference of at least two orders of magnitude between bulk concentrations in the native sediments and the remediation cap.
View Article and Find Full Text PDFMerolimnic insects can accumulate and transport considerable amounts of aquatic contaminants to terrestrial systems. The rate of contaminant biotransport, termed insect-mediated contaminant flux (IMCF), depends on emergent insect biomass and contaminant accumulation, both functions of environmental concentration. We developed a mathematical model of IMCF and apply it to three ecotoxicological studies obtained through the US Environmental Protection Agency's ECOTOX database to determine at which concentration maximum IMCF occurs.
View Article and Find Full Text PDFAn international effort to restore contaminated areas across the Great Lakes has been underway for over 50 years. Although experts have increasingly recognized the inherent connections between ecological conditions and community level benefits, Great Lakes community revitalization continues to be a broad and complex topic, lacking a comprehensive definition. The purpose of this study was to generate a testable "AOC-Revitalization Framework" for linking remediation and restoration success, represented by Beneficial Use Impairment (BUI) removal in U.
View Article and Find Full Text PDFPolychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran (PCDD/F) are persistent, toxic, and bioaccumulative. Currently, PCDD/F monitoring programs primarily use fish and birds with potentially large home ranges to monitor temporal trends over broad spatial scales; sentinel organisms that provide targeted sediment contaminant information across small geographic areas have yet to be developed. Riparian orb-weaving spiders, which typically have small home ranges and consume primarily adult aquatic insects, are potential PCDD/F sentinels.
View Article and Find Full Text PDFAquatic ecosystems around the world are contaminated with a wide range of anthropogenic chemicals, including metals and organic pollutants, that originate from point and nonpoint sources. Many of these chemical contaminants have complex environmental cycles, are persistent and bioavailable, can be incorporated into aquatic food webs, and pose a threat to the health of wildlife and humans. Identifying appropriate sentinels that reflect bioavailability is critical to assessing and managing aquatic ecosystems impacted by contaminants.
View Article and Find Full Text PDFA Society of Environmental Toxicology and Chemistry (SETAC) Focused Topic Meeting (FTM) on the environmental management of per- and polyfluoroalkyl substances (PFAS) convened during August 2019 in Durham, North Carolina (USA). Experts from around the globe were brought together to critically evaluate new and emerging information on PFAS including chemistry, fate, transport, exposure, and toxicity. After plenary presentations, breakout groups were established and tasked to identify and adjudicate via panel discussions overarching conclusions and relevant data gaps.
View Article and Find Full Text PDFIndustrial chemical contamination within coastal regions of the Great Lakes can pose serious risks to wetland habitat and offshore fisheries, often resulting in fish consumption advisories that directly affect human and wildlife health. Mercury (Hg) is a contaminant of concern in many of these highly urbanized and industrialized coastal regions, one of which is the Saint Louis River estuary (SLRE), the second largest tributary to Lake Superior. The SLRE has legacy Hg contamination that drives high Hg concentrations within sediments, but it is unclear whether legacy-derived Hg actively cycles within the food web.
View Article and Find Full Text PDFThe use of aqueous film-forming foam (AFFF) has resulted in the widespread occurrence of per- and polyfluoroalkyl substances (PFAS) in groundwater, drinking water, soils, sediments, and receiving waters throughout the United States and other countries. We present the research and development efforts to date by the Strategic Environmental Research and Development Program (SERDP) and the Environmental Security Technology Certification Program (ESTCP) to measure PFAS in the environment, characterize AFFF-associated sources of PFAS, understand PFAS fate and behavior in the environment, assess the risk to ecological receptors, develop in situ and ex situ treatment technologies for groundwater, treat soils and investigation-derived wastes, and examine the ecotoxicity of PFAS-free fire suppression formulations. Environ Toxicol Chem 2021;40:24-36.
View Article and Find Full Text PDFPolycyclic aromatic hydrocarbons (PAHs) are among the most widespread and potentially toxic contaminants in Great Lakes (USA/Canada) tributaries. The sources of PAHs are numerous and diverse, and identifying the primary source(s) can be difficult. The present study used multiple lines of evidence to determine the likely sources of PAHs to surficial streambed sediments at 71 locations across 26 Great Lakes Basin watersheds.
View Article and Find Full Text PDFAlthough endocrine disrupting compounds have been detected in wastewater and surface waters worldwide using a variety of in vitro effects-based screening tools, e.g. bioassays, few have examined potential attenuation of environmental contaminants by both natural (sorption, degradation, etc.
View Article and Find Full Text PDFCell-based metabolomics was used in a proof-of-concept fashion to investigate the biological effects of contaminants as they traveled from a wastewater treatment plant (WWTP) discharge to a drinking water treatment plant (DWTP) intake in a surface-water usage cycle. Zebrafish liver (ZFL) cells were exposed to water samples collected along a surface-water flowpath, where a WWTP was located ∼14.5 km upstream of a DWTP.
View Article and Find Full Text PDFWe investigated polychlorinated biphenyl (PCB) contamination at the Ashtabula River (northeast OH, USA) area of concern following remedial dredging using araneid and tetragnathid spiders. The PCB concentrations remain elevated in the area of concern compared with reference conditions. Patterns of contamination were strikingly similar between taxa, but were higher in tetragnathids at the most contaminated sites.
View Article and Find Full Text PDFRivers in the arid Western United States face increasing influences from anthropogenic contaminants due to population growth, urbanization, and drought. To better understand and more effectively track the impacts of these contaminants, biologically-based monitoring tools are increasingly being used to complement routine chemical monitoring. This study was initiated to assess the ability of both targeted and untargeted biologically-based monitoring tools to discriminate impacts of two adjacent wastewater treatment plants (WWTPs) on Colorado's South Platte River.
View Article and Find Full Text PDFArch Environ Contam Toxicol
April 2018
Current methods for evaluating exposure in ecosystems contaminated with hydrophobic organic contaminants typically focus on sediment exposure. However, a comprehensive environmental assessment requires a more holistic approach that not only estimates sediment concentrations, but also accounts for exposure by quantifying other pathways, such as bioavailability, bioaccumulation, trophic transfer potential, and transport of hydrophobic organic contaminants within and outside of the aquatic system. The current study evaluated the ability of multiple metrics to estimate exposure in an aquatic ecosystem.
View Article and Find Full Text PDFSurface water from 38 streams nationwide was assessed using 14 target-organic methods (719 compounds). Designed-bioactive anthropogenic contaminants (biocides, pharmaceuticals) comprised 57% of 406 organics detected at least once. The 10 most-frequently detected anthropogenic-organics included eight pesticides (desulfinylfipronil, AMPA, chlorpyrifos, dieldrin, metolachlor, atrazine, CIAT, glyphosate) and two pharmaceuticals (caffeine, metformin) with detection frequencies ranging 66-84% of all sites.
View Article and Find Full Text PDF