In natural listening conditions, many sounds must be detected and identified in the context of competing sound sources, which function as background noise. Traditionally, noise is thought to degrade the cortical representation of sounds by suppressing responses and increasing response variability. However, recent studies of neural network models and brain slices have shown that background synaptic noise can improve the detection of signals.
View Article and Find Full Text PDFAmplitude modulations are fundamental features of natural signals, including human speech and nonhuman primate vocalizations. Because natural signals frequently occur in the context of other competing signals, we used a forward-masking paradigm to investigate how the modulation context of a prior signal affects cortical responses to subsequent modulated sounds. Psychophysical "modulation masking," in which the presentation of a modulated "masker" signal elevates the threshold for detecting the modulation of a subsequent stimulus, has been interpreted as evidence of a central modulation filterbank and modeled accordingly.
View Article and Find Full Text PDFAmplitude modulation encoding is critical for human speech perception and complex sound processing in general. The modulation transfer function (MTF) is a staple of auditory psychophysics, and has been shown to predict speech intelligibility performance in a range of adverse listening conditions and hearing impairments, including cochlear implant-supported hearing. Although both tonal and broadband carriers have been used in psychophysical studies of modulation detection and discrimination, relatively little is known about differences in the cortical representation of such signals.
View Article and Find Full Text PDFObjective: Review clinical experience with temporal fossa hemangiopericytomas (HPCs).
Study Design: Retrospective case series review.
Setting: Tertiary referral center.
Purpose Of Review: This review summarizes recent research into cortical processing of vocalizations in animals and humans. There has been a resurgent interest in this topic accompanied by an increased number of studies using animal models with complex vocalizations and new methods in human brain imaging. Recent results from such studies are discussed.
View Article and Find Full Text PDFWe tested the involvement of cognition in adult experience-dependent neuroplasticity using primate cortical implants. In a prior study, learning an operant sensory discrimination increased cortical excitability and target selectivity. Here, the prior task was separated into three behavioral phases.
View Article and Find Full Text PDFSince the dawn of experimental psychology, researchers have sought an understanding of the fundamental relationship between the amplitude of sensory stimuli and the magnitudes of their perceptual representations. Contemporary theories support the view that magnitude is encoded by a linear increase in firing rate established in the primary afferent pathways. In the present study, we have investigated sound intensity coding in the rat primary auditory cortex (AI) and describe its plasticity by following paired stimulus reinforcement and instrumental conditioning paradigms.
View Article and Find Full Text PDF