The blood enzyme glutamate-oxaloacetate transaminase (GOT) has been postulated as an effective therapeutic to protect the brain during stroke. To demonstrate its potential clinical utility, a new human recombinant form of GOT (rGOT) was produced for medical use. We tested the pharmacokinetics and evaluated the protective efficacy of rGOT in rodent and non-human primate models that reflected clinical stroke conditions.
View Article and Find Full Text PDFBispecific antibodies (bsAbs) are emerging immune-therapeutics, and many formats exist that differ considerably in structure. However, little systematic data exist about how the spatial organization of their components influences activity, requiring innovative approaches combining empirical and quantitative frameworks. This study presents a modular DNA nanotechnology platform to generate numerous bsAbs with surrogate geometries that span the structural features of the BiTE, IgG-like, and IgG-conjugate platforms to screen for T-cell engagement.
View Article and Find Full Text PDFChemical linkages that respond to biological stimuli are important for many pharmaceutical and biotechnological applications, making it relevant to explore new variants with different responsivity profiles. This work explores the responsiveness of a TAT peptide-based sulfonium vinyl sulfide probe that responds to nucleophilic thiols, radical thiol species (RTS), and reactive nitrogen species (RNS). Under model conditions, response to nucleophilic thiols was very slow (hours/days), though fast with down to molar equivalents of either RTS or RNS (minutes).
View Article and Find Full Text PDFIn nature, enzymatic pathways often involve compartmentalization effects that can modify the intrinsic activity and specificity of the different enzymes involved. Consequently, extensive research has focused on replicating and studying the compartmentalization effects on individual enzymes and on multistep enzyme "cascade" reactions. This study explores the influence of compartmentalization achieved using molecular crowding on the glucose oxidase/horseradish peroxidase (GOx/HRP) cascade reaction.
View Article and Find Full Text PDFLaminar graphene oxide (GO) is a promising candidate material for next-generation highly water-permeable membranes. Despite extensive research, there is little information known concerning GO's ion-sieving properties at high acidic/basic pH and temperatures. In this study, the ion-blockage properties of the pristine GO and GO/zinc oxide (ZnO) nanocomposite membranes were tested using a non-pressure-driven filtration setup over a wide range of pH and temperatures.
View Article and Find Full Text PDFThe cell membrane is a restrictive biological barrier, especially for large, charged molecules, such as proteins. The use of cell-penetrating peptides (CPPs) can facilitate the delivery of proteins, protein complexes, and peptides across the membrane by a variety of mechanisms that are all limited by endosomal sequestration. To improve CPP-mediated delivery, we previously reported the rapid and effective cytosolic delivery of proteins in vitro and in vivo by their coadministration with the peptide S10, which combines a CPP and an endosomal leakage domain.
View Article and Find Full Text PDFPEGylation is one of the most widely employed strategies to increase the circulatory half-life of proteins and to reduce immune responses. However, conventional PEGylation protocols often require excess reagents and extended reaction times because of their inefficiency. This study demonstrates that a microwave-induced transient heating phenomenon can be exploited to significantly accelerate protein PEGylation and even increase the degree of PEGylation achievable beyond what is possible at room temperature.
View Article and Find Full Text PDFBiomacromolecules
November 2022
Bioconjugation reactions, such as protein PEGylation, generally require excess reagents because of their inefficiency. Intriguingly, few reports have investigated the fundamental causes of this inefficiency. This study demonstrates that the excluded volume effect (EVE)─caused by the mutual repulsion of methoxy poly(ethylene glycol) (mPEG) and proteins under typical PEGylation conditions─causes proteins and protein-reactive mPEG (5 kDa) to self-associate into separate "protein-rich" and "mPEG-rich" nano-domains (i.
View Article and Find Full Text PDF"Click" reactions have revolutionized research in many areas of science. However, a disadvantage of the high stability of the Click product is that identifying simple treatments for cleanly dissociating the latter under the same guiding principles, i.e.
View Article and Find Full Text PDFGlutamate, the main excitatory neurotransmitter in the central nervous system, plays an essential role in several cognitive activities such as memorizing and learning. Excessive glutamate release and disturbance of glutamate homeostasis participates in multiple neuronal pathologies including cerebral ischemia (inadequate blood supply), traumatic brain injury (e.g.
View Article and Find Full Text PDFThe discovery of durable, active, and affordable electrocatalysts for energy-related catalytic applications plays a crucial role in the advancement of energy conversion and storage technologies to achieve a sustainable energy future. Transition metal borides (TMBs), with variable compositions and structures, present a number of interesting features including coordinated electronic structures, high conductivity, abundant natural reserves, and configurable physicochemical properties. Therefore, TMBs provide a wide range of opportunities for the development of multifunctional catalysts with high performance and long durability.
View Article and Find Full Text PDFEnzymes catalyze chemical transformations of great importance in many fields, and analysis of the rate of these transformations is equally important. The latter are typically monitored using surrogate substrates that produce quantifiable optical signals, owing to limitations associated with "label-free" techniques that could be used to monitor the transformation of original substrate molecules. In this study, terahertz (THz) emission technology is used as a noninvasive and label-free technique to monitor the kinetics of lipase-induced hydrolysis of several substrate molecules (including the complex substrate whole cow's milk) and horseradish peroxidase-catalyzed oxidation of o-phenylenediamine in the presence of H O .
View Article and Find Full Text PDFStroke is a major cause of morbidity, mortality, and disability. During ischemic stroke, a marked and prolonged rise of glutamate concentration in the brain causes neuronal cell death. This study explores the protective effect of a bioconjugate form of glutamate oxaloacetate transaminase (hrGOT), which catalyzes the depletion of blood glutamate in the bloodstream for ~6 days following a single administration.
View Article and Find Full Text PDFFemtosecond (fs) laser irradiation techniques are emerging tools for inactivating viruses that do not involve ionizing radiation. In this work, the inactivation of two bacteriophages representing protective capsids with different geometric constraints, that is, the near-spherical MS2 (with a diameter of 27 nm) and the filamentous M13 (with a length of 880 nm) is compared using energetic visible and near-infrared fs laser pulses with various energies, pulse durations, and exposure times. Intriguingly, the results show that inactivation using 400 nm lasers is substantially more efficient for MS2 compared to M13.
View Article and Find Full Text PDFCarbon nanodots (CNDs) have attracted substantial scientific curiosity because of their intriguing stimuli-responsive optical properties. However, one obstacle to the more widespread use of CNDs as transducers for , biodetection systems is incomplete knowledge regarding the underlying chemical changes responsible for this responsiveness, and how these chemical features can be engineered the precursors chosen for CND synthesis. This study demonstrates that the precursor's functional groups play a key role in directing N/S/Se heteroatom dopants either towards the surface of the CNDs, towards the aromatic core, or towards small organic fluorophores in the core.
View Article and Find Full Text PDFIn this study, an engineered M13 bacteriophage was examined as a biological template to create a well-defined spacing between very small gold nanoparticles (AuNPs 3-13 nm). The effect of the AuNP particle size on the enhancement of the nonlinear process of two-photon excitation fluorescence (2PEF) was investigated. Compared to conventional (one-photon) microscopy techniques, such nonlinear processes are less susceptible to scattering given that the density of background-scattered photons is too low to generate a detectable signal.
View Article and Find Full Text PDFIt is currently challenging to eradicate cancer. In the case of solid tumors, the dense and aberrant extracellular matrix (ECM) is a major contributor to the heterogeneous distribution of small molecule drugs and nano-formulations, which makes certain areas of the tumor difficult to treat. As such, much research is devoted to characterizing this matrix and devising strategies to modify its properties as a means to facilitate the improved penetration of drugs and their nano-formulations.
View Article and Find Full Text PDFAntigen-binding fragments of antibodies are biotechnologically useful agents for decorating drug delivery systems, for blocking cell-surface receptors in cell culture, for recognizing analytes in biosensors, and potentially as therapeutics. They are typically produced by enzymatic digestion of full antibodies and isolated from the undesirable fragment crystallizable (Fc) by affinity chromatography using Protein-A columns. However, while Protein-A has a strong "classical" interaction with Fc fragments, it can also more weakly bind to an "alternative" site on the heavy chain variable region of antigen-binding fragments.
View Article and Find Full Text PDFScreening libraries of mutant proteins by phage display is now relatively common. However, one unknown factor is how the bacteriophage scaffold itself influences the properties of the displayed protein. This communication evaluates the effect of solution parameters on the catalytic activity of phage displayed Bacillus subtilis Lipase A (BSLA), compared to the free enzyme in solution.
View Article and Find Full Text PDFIrradiation of femtosecond (fs) pulse lasers in the visible and near-infrared ranges have been proposed as a promising approach for inactivating viruses. However, in order to achieve significant virus inactivation, past works have required relatively long irradiation times (1 hour or longer), even for small volumes. Given its advantages compared with other techniques, there is an urgent need to shorten the time required to inactivate viruses using fs laser technology.
View Article and Find Full Text PDFMonoclonal antibodies (mAb) are a major focus of the pharmaceutical industry, and polyclonal immunoglobulin G (IgG) therapy is used to treat a wide variety of health conditions. As some individuals require mAb/IgG therapy their entire life, there is currently a great desire to formulate antibodies for bolus injection rather than infusion. However, to achieve the required doses, very concentrated antibody solutions may be required.
View Article and Find Full Text PDFThe average number of methoxy poly(ethylene glycol) (mPEG) chains grafted to a protein - also known as the degree of PEGylation - is a fundamental parameter for characterizing a bioconjugate. The degree of PEGylation is typically determined by chromatographic or electrophoretic methods, which are subject to certain biases. This contribution describes an analytical approach alongside technical precautions for quantitatively determining the degree of PEGylation of protein bioconjugates by H NMR spectroscopy.
View Article and Find Full Text PDFViruses have recently emerged as promising nanomaterials for biotechnological applications. One of the most important applications of viruses is phage display, which has already been employed to identify a broad range of potential therapeutic peptides and antibodies, as well as other biotechnologically relevant polypeptides (including protease inhibitors, minimizing proteins, and cell/organ targeting peptides). Additionally, their high stability, easily modifiable surface, and enormous diversity in shape and size, distinguish viruses from synthetic nanocarriers used for drug delivery.
View Article and Find Full Text PDFRecent observations have suggested that nonionizing radiation in the microwave and terahertz (THz; far-infrared) regimes could have an effect on double-stranded DNA (dsDNA). These observations are of significance owing to the omnipresence of microwave emitters in our daily lives (e.g.
View Article and Find Full Text PDF