Purpose: Patient age has important clinical utility for refining a differential diagnosis in radiology. Here, we evaluate the potential for convolutional neural network models to predict patient age based on anterior-posterior chest radiographs for instances where patients may present for emergency services without the ability to provide this identifying information.
Methods: We used the CheXpert dataset of 224,316 chest radiographs from 65,240 patients to train CNN regression models with ResNet50 and DenseNet121 architectures for prediction of patient age based on anterior-posterior (AP) view chest radiographs.