Publications by authors named "Marat A Mukhamedyarov"

TRPV1 represents a non-selective transient receptor potential cation channel found not only in sensory neurons, but also in motor nerve endings and in skeletal muscle fibers. However, the role of TRPV1 in the functioning of the neuromuscular junction has not yet been fully established. In this study, the Levator Auris Longus muscle preparations were used to assess the effect of pharmacological activation of TRPV1 channels on neuromuscular transmission.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is manifested as skeletal muscle denervation, loss of motor neurons and finally severe respiratory failure. Mutations of RNA-binding protein FUS are one of the common genetic reasons of ALS accompanied by a 'dying back' type of degeneration. Using fluorescent approaches and microelectrode recordings, the early structural and functional alterations in diaphragm neuromuscular junctions (NMJs) were studied in mutant FUS mice at the pre-onset stage.

View Article and Find Full Text PDF

Estimation of the presynaptic calcium level is a key task in studying synaptic transmission since calcium entry into the presynaptic cell triggers a cascade of events leading to neurotransmitter release. Moreover, changes in presynaptic calcium levels mediate the activity of many intracellular proteins and play an important role in synaptic plasticity. Studying calcium signaling is also important for finding ways to treat neurodegenerative diseases.

View Article and Find Full Text PDF

In this study, novel derivatives based on 6-methyluracil and condensed uracil were synthesized, namely, 2,4-quinazoline-2,4-dione with ω-(-nitrilebenzylethylamino) alkyl chains at the N atoms of the pyrimidine ring. In this series of synthesized compounds, the polymethylene chains were varied from having tetra- to hexamethylene chains, and secondary NH, tertiary ethylamino, and quaternary ammonium groups were introduced into the chains. The molecular modeling of the compounds indicated that they could function as dual binding site acetylcholinesterase inhibitors, binding to both the peripheral anionic site and active site.

View Article and Find Full Text PDF

Atrial fibrillation (AF) is one of the most prevalent forms of arrhythmia that carries an increased risk of stroke which, in turn, is strongly associated with cognitive decline. The majority of dementia cases are caused by Alzheimer's disease (AD) with obscure pathogenesis. While the exact mechanisms are unknown, the role of inflammatory processes and infectious agents have recently been implicated in both AD and AF, suggesting a common link between these maladies.

View Article and Find Full Text PDF

Background/objective: Alzheimer's disease (AD) is a progressive incurable neurodegenerative disorder. Glial cell line-derived neurotrophic factor (GDNF) is a prominent regulator of brain tissue and has an impressive potential for use in AD therapy. While its metabolism is still not fully understood, delivering neuropeptides such as GDNF via umbilical cord blood mononuclear cells (UCBMCs) to the sites of neurodegeneration is a promising approach in the development of innovative therapeutic avenues.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a devastating and progressive form of dementia that is typically associated with a build-up of amyloid-β plaques and hyperphosphorylated and misfolded tau protein in the brain. Presently, there is no single test that confirms AD; therefore, a definitive diagnosis is only made after a comprehensive medical evaluation, which includes medical history, cognitive tests, and a neurological examination and/or brain imaging. Additionally, the protracted prodromal phase of the disease makes selection of control subjects for clinical trials challenging.

View Article and Find Full Text PDF

Current treatment options of chronic, progressive degenerative neuropsychiatric conditions offer only marginal efficacy, and there is no therapy which arrests or even reverses these diseases. Interest in genetic engineering and cell-based approaches have constantly been increasing, although most of them so far proved to be fruitless or at best provided very slight clinical benefit. In the light of the highly complex patho-mechanisms of these maladies, the failure of drugs aimed at targeting single molecules is not surprising.

View Article and Find Full Text PDF

Novel 6-methyluracil derivatives with ω-(substituted benzylethylamino)alkyl chains at the nitrogen atoms of the pyrimidine ring were designed and synthesized. The numbers of methylene groups in the alkyl chains were varied along with the electron-withdrawing substituents on the benzyl rings. The compounds are mixed-type reversible inhibitors of cholinesterases, and some of them show remarkable selectivity for human acetylcholinesterase (hAChE), with inhibitory potency in the nanomolar range, more than 10,000-fold higher than that for human butyrylcholinesterase (hBuChE).

View Article and Find Full Text PDF

Mental illnesses are frequent co-morbid conditions in chronic systemic diseases. High incidences of depression, anxiety and cognitive impairment complicate cardiovascular and metabolic disorders such as hypertension and diabetes mellitus. Lifestyle changes including regular exercise have been advocated to reduce blood pressure and improve glycaemic control.

View Article and Find Full Text PDF

Chronic disorders such as hypertension and diabetes mellitus are often associated with depressive and anxiety symptoms, as well as cognitive decline. Once developed, psychological support is essential for improving the quality of life. This study is aimed at identifying impaired mental health in connection with these systemic metabolic disorders.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is an incurable, chronic, fatal neuro-degenerative disease characterized by progressive loss of moto-neurons and paralysis of skeletal muscles. Reactivating dysfunctional areas is under earnest investigation utilizing various approaches. Here we present an innovative gene-cell construct aimed at reviving inert structure and function.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by memory decline, but is often associated with non-cognitive symptoms, including muscular dysfunction. In the majority of cases these motor disturbances are seen when other neuro-degenerative disorders such as Parkinson's disease overlap dementia, however these can also be directly related to AD itself. Although the patho-mechanism remains largely unclear, β-amyloid peptide (βAP) is thought to be a key role-player in both the brain and periphery.

View Article and Find Full Text PDF

Alzheimer's dementia (AD) is a degenerative brain disorder characterized mainly by cholinergic failure, but other neuro-transmitters are also deficient especially at late stages of the disease. Misfolded β-amyloid peptide has been identified as a causative agent, however inflammatory changes also play a pivotal role. Even though the most prominent pathology is seen in the cognitive functions, specific abnormalities of the central nervous system (CNS) are also reflected in the periphery, particularly in the immune responses of the body.

View Article and Find Full Text PDF

Objectives: Among several other factors, the neuro-toxic β-amyloid peptide (βAP)-induced inflammatory mechanisms have also been implicated in the pathogenesis of Alzheimer's dementia (AD). Cytokines have recently emerged as prime candidates underlying this immune reaction. The purpose of this study was to evaluate the inflammatory response of peripheral blood mono-nuclear cells (PBMC) in AD.

View Article and Find Full Text PDF

Introduction: Alzheimer's β-amyloid peptide (βAP) is known to possess a wide range of toxic effects on neurons in vitro and in vivo; however, there is little information available regarding its impact on other excitable tissues such as skeletal muscles, which, apart from brain cells, are thought to also be targets of βAP.

Methods: Utilizing the combination of electrophysiology and myography, we investigated whether βAP also impairs the functioning of myocytes in frogs and mice.

Results: Although application of βAP in the range of 10(-6) to 10(-8) M induced depolarization of muscle fibers in both species, it impaired contractility in frogs but not in mice, by reducing endplate potential amplitude and increasing the threshold potential.

View Article and Find Full Text PDF

Current therapy of a number of neuropsychiatric maladies has only symptomatic modality. Effective treatment of these neuro-degenerative diseases, including amyotrophic lateral sclerosis (ALS), may benefit from combined gene/stem-cell approaches. In this report, mononuclear fraction of human umbilical cord blood cells (hUCBCs) were transfected by electroporation with dual plasmid constructs, simultaneously expressing vascular endothelial growth factor 165 (VEGF(165)) and human fibroblast growth factor 2 (FGF(2)) (pBud-VEGF-FGF(2)).

View Article and Find Full Text PDF

Protein aggregation and amyloid fibril deposits in the central nervous system are characteristic features of more than 2 dozens of pathologic conditions. The various peptides thought to underlie these disorders have striking structural and functional similarities. The main difference between them at the molecular level is whether they are endogenously produced particles, exogenously transmitted infectious agents, or both.

View Article and Find Full Text PDF

Werner Heisenberg (1901-1976) is one of the most controversial, most ambivalent and most important figures in the history of modern science. The debate surrounding him with respect to nuclear weapons and National Socialism appears unending. Even though Heisenberg's uncertainty principle of the quantum system and his involvement in the Nazi atomic bomb project have been thoroughly discussed in various journals over the past decades, no communication has ever been published at a holistic level of his greatest Nobel-prize winning achievement in theoretical physics.

View Article and Find Full Text PDF

Calcium/calmodulin-dependent protein-kinase II (CaMKII) is a ubiquitous intracellular enzyme, which is implicated in learning and memory mechanisms in the central nervous system, however its contribution to peripheral cholinergic neurotransmission is not well characterized. This study evaluated the impact of CaMKII on the function of frog neuromuscular synapse using electrophysiological recordings. Application of the selective CaMKII inhibitor KN-93 (5 microM) did not significantly alter the parameters of evoked and spontaneous quantal acetylcholine release under low-frequency stimulation (0.

View Article and Find Full Text PDF

Stem cell based therapies for cerebral ischemia (CI) utilize different cell sources including embryonic stem cells (ESCs), neural stem cells (NSCs), umbilical cord blood cells (UCBCs), mesenchymal stem cells (MSCs), and some immortalized cell lines. To date, experimental studies showed that all of these cell sources have been successful to some extent in attenuating the ischemic damage and improving functional recovery after brain injury. Bone marrow derived MSCs seem to be the most widely used and well characterized cell source, which can be also employed for autologous transplantation.

View Article and Find Full Text PDF

Background: It is well established that the serotonergic system (SS) plays important roles in the pathogenesis of cardiovascular diseases. However, the impact of serotonin and its inter-relation with the sympathoadrenal system (SAS) in chronic heart failure (CHF) is poorly understood.

Methods: Utilizing high-performance liquid chromatography with electrochemical detection, we determined blood plasma levels of serotonin (5-hydroxy-triptamine, [5-HT](p)), 5- hydroxy-indole-acetic acid ([5-HIAA](p)), epinephrine ([E](p)), norepinephrine ([NE](p)), 3,4-dihydroxy-L-phenyl-alanine ([DOPA](p)), dopamine ([DA](p)) and the platelet concentration of serotonin ([5-HT](pt)) in CHF patients with different morphofunctional alterations of myocardium.

View Article and Find Full Text PDF

The transgenic mouse model of familial amyotrophic lateral sclerosis (ALS) expressing human mutant ((G)93(A)) copper/zinc superoxide dismutase (SOD(1)) is an attractive model for studying the therapeutic effects of RNA interference (RNAi) because of the specific silencing of the mutant gene expression. We studied small interfering RNA (siRNA)-mediated down-regulation of human mutant (G)93(A) SOD(1) gene in lumbar spinal cord of ALS mice. siRNA was applied onto the proximal nerve stump of severed sciatic nerves.

View Article and Find Full Text PDF

Numerous findings obtained over the last decades suggest that accumulation of beta-amyloid peptide (betaAP) plays the central role in the pathogenesis of Alzheimer's disease. It is well established that betaAP has wide range of toxic effects on neurons in vitro and in vivo, however the influence of betaAP in the periphery and on various other types of excitable tissues, eg. skeletal muscle cells, is almost unknown despite the many non-cognitive and other extra-neuronal symptoms associated with Alzheimer's dementia.

View Article and Find Full Text PDF

We have studied the mechanisms of paired-pulse facilitation (PPF) of neurotransmitter release in isolated nerve-muscle preparations of the frog cutaneous pectoris muscle. In normal extracellular Ca(2+) concentration ([Ca(2+)](o), 1.8 mM), as the interpulse interval was increased from 5 to 500 ms, PPF decayed as a sum of two exponential components: a larger but shorter first component (F1) and a smaller but more prolonged second component (F2).

View Article and Find Full Text PDF