Publications by authors named "Maral Hekmatfar"

Li-garnets are promising inorganic ceramic solid electrolytes for lithium metal batteries, showing good electrochemical stability with Li anode. However, their brittle and stiff nature restricts their intimate contact with both the electrodes, hence presenting high interfacial resistance to the ionic mobility. To address this issue, a strategy employing ionic liquid electrolyte (ILE) thin interlayers at the electrodes/electrolyte interfaces is adopted, which helps overcome the barrier for ion transport.

View Article and Find Full Text PDF

Layered lithium-rich nickel manganese cobalt oxide (LR-NMC) represents one of the most promising cathode materials for application in high energy density lithium-ion batteries. The extraordinary capacity delivered derives from a combination of both cationic and anionic redox processes. However, the latter ones lead to oxygen evolution which triggers structural degradation and electrode/electrolyte interface (EEI) instability that hinders the use of LR-NMC in practical application.

View Article and Find Full Text PDF

Even though electrochemically inactive, the binding agent in lithium-ion electrodes substantially contributes to the performance metrics such as the achievable capacity, rate capability, and cycling stability. Herein, we present an in-depth comparative analysis of three different aqueous binding agents, allowing for the replacement of the toxic N-methyl-2-pyrrolidone as the processing solvent, for high-energy LiNiMnCoO (Li-rich NMC or LR-NMC) as a potential next-generation cathode material. The impact of the binding agents, sodium carboxymethyl cellulose, sodium alginate, and commercial TRD202A (TRD), and the related chemical reactions occurring during the electrode coating process on the electrode morphology and cycling performance is investigated.

View Article and Find Full Text PDF

Hard carbons are currently the most widely used negative electrode materials in Na-ion batteries. This is due to their promising electrochemical performance with capacities of 200-300 mAh g and stable long-term cycling. However, an abundant and cheap carbon source is necessary in order to comply with the low-cost philosophy of Na-ion technology.

View Article and Find Full Text PDF

Aiming at a fundamental understanding of the processes at the electrode|ionic liquid interface in Li ion batteries, we investigated the interaction of the ionic liquid n-butyl-n-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide [BMP][TFSA] and of Li with a reduced rutile TiO2(110) (1 × 1) surface as well as the interaction between [BMP][TFSA] and Li on the TiO2(110) surface under ultrahigh vacuum (UHV) conditions by X-ray photoelectron spectroscopy and scanning tunnelling microscopy. Between 80 K and 340 K [BMP][TFSA] adsorbs molecularly on the surface and at higher temperatures decomposition is observed, resulting in products such as Sad, Fad and TiNx. The decomposition pattern is compared to proposals based on theory.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionhqa2070cm3ksql6uh59379u1t5btmea2): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once