A near-field electrospinnable and three-dimensional (3D) bioprintable gelatin-alginate hydrogel was synthesized by controlling a moderate amount of alginate and a limited amount of crosslinker, tannic acid. This cytocompatible gelatin-alginate tough hydrogel exhibited excellent shape fidelity, a self-standing height exceeding 20 mm, and the capability for multilayer and four-axis 3D printing of complex scaffold shapes. The control of gel strength and rheology enables this hydrogel for successful stretching extrusion under an electric field in near-field electrospinning-induced 3D printing and four-axis printing.
View Article and Find Full Text PDFThe Development of bioresponsive extrudable hydrogels for 3D bioprinting is imperative to address the growing demand for scaffold design as well as efficient and reliable methods of tissue engineering and regenerative medicine. This study proposed genipin (5 mg) cross-linked gelatin (1 to 1.5 g)-hyaluronic acid (0.
View Article and Find Full Text PDF