Parasitol Res
December 2023
The selection process for advanced therapies in patients with inflammatory bowel diseases (IBDs) must prioritize safety, especially when considering new biologic agents or oral molecule modulators. In C57BL/6 mice, oral infection with Toxoplasma gondii induces intestinal inflammation through excessive tumor necrosis factor (TNF) production, making TNF neutralization a potential therapeutic intervention. Considering this, the present study aimed to evaluate the therapeutic effects of BmooMP-α-I, a snake venom metalloprotease isolated from Bothrops moojeni, which could promote TNF hydrolysis, in treating T.
View Article and Find Full Text PDFMediators Inflamm
January 2020
It has been described that the metalloprotease BmooMP-alpha-I purified from snake venom is able to hydrolyze the TNF molecule. However, this observation has been based mainly on investigation, in addition to molecular modeling and docking approaches. Considering that there is no in vivo study to demonstrate the biological effects of this enzyme, the major aim to the present work was to investigate whether the BmooMP-alpha-I has any anti-inflammatory efficacy by setting up a murine experimental design of colitis induced by dextran sulfate sodium (DSS).
View Article and Find Full Text PDFToxins (Basel)
July 2016
Tumor necrosis factor (TNF) is a major cytokine in inflammatory processes and its deregulation plays a pivotal role in several diseases. Here, we report that a zinc metalloprotease extracted from Bothrops moojeni venom (BmooMP-alpha-I) inhibits TNF directly by promoting its degradation. This inhibition was demonstrated by both in vitro and in vivo assays, using known TLR ligands.
View Article and Find Full Text PDFHymenoptera venoms constitute an interesting source of natural toxins that may lead to the development of novel therapeutic agents. The present study investigated the enzymatic and biological characteristics of the crude venom of the ant Odontomachus bauri. Its crude venom presents several protein bands, with higher staining for six proteins with gelatinolytic activity (17, 20, 26, 29, 43 and 48 kDa).
View Article and Find Full Text PDF