Publications by authors named "Maragnoli M"

Background: Despite strong evidence linking fibroblast growth factor 2 (FGF2) with anxiety and depression in both rodents and humans, the molecular mechanisms linking FGF2 with anxiety are not understood.

Methods: We compare 1) mice that lack a functional Fgf2 gene (Fgf2 knockout [KO]), 2) wild-type mice, and 3) Fgf2 KO with adult rescue by FGF2 administration on measures of anxiety, depression, and motor behavior, and further investigate the mechanisms of this behavior by cellular, molecular, and neuroendocrine studies.

Results: We demonstrate that Fgf2 KO mice have increased anxiety, decreased hippocampal glucocorticoid receptor (GR) expression, and increased hypothalamic-pituitary-adrenal axis activity.

View Article and Find Full Text PDF

Fibroblast growth factors (Fgfs) and their receptors (Fgfr) are expressed in the developing and adult CNS. Previous studies demonstrated a decrease in cortical interneurons and locomotor hyperactivity in mice with a conditional Fgfr1 deletion generated in radial glial cells during midneurogenesis (Fgfr1(f/f);hGfapCre+). Here, we report earlier and more extensive inactivation of Fgfr1 in neuroepithelial cells of the CNS (Fgfr1(f/f);NesCre+).

View Article and Find Full Text PDF

The GABAergic system in the central amygdala (CeA) plays a major role in ethanol dependence and in the anxiogenic response to ethanol withdrawal. Previously, we found that both ethanol and corticotropin releasing factor (CRF) increase GABAergic transmission in mouse and rat CeA neurons, in part by enhancing the release of GABA via activation of presynaptic CRF1 receptors. CRF1 receptors are coupled to the enzyme adenylyl cyclase (AC), which produces the second messenger cyclic AMP.

View Article and Find Full Text PDF

To understand the role of specific fibroblast growth factor receptors (FGFRs) in cortical development, we conditionally inactivated Fgfr2 or both Fgfr1 and Fgfr2 [Fgfr2 conditional knock-out (cKO) or double knock-out mice, respectively] in radial glial cells of the dorsal telencephalon. Fgfr1 and Fgfr2 are necessary for the attainment of a normal number of excitatory neurons in the cerebral cortex. The action of FGF receptors appears to be through increasing self-renewal of neuronal precursors within the ventricular zone.

View Article and Find Full Text PDF

Background: Motor hyperactivity due to hyper-dopaminergic neurotransmission in the basal ganglia is well characterized; much less is known about the role of the neocortex in controlling motor behavior.

Methods: Locomotor behavior and motor, associative, and spatial learning were examined in mice with conditional null mutations of fibroblast growth factor receptor 1 (Fgfr1) restricted to telencephalic neural precursors (Fgfr1(f/f;hGfapCre)). Locomotor responses to a dopamine agonist (Amphetamine 2 mg/kg and Methylphenidate 10 mg/kg) and antagonists (SCH233390 .

View Article and Find Full Text PDF

Three main cellular components have been described in the CNS: neurons, astrocytes, and oligodendrocytes. In the past 10 years, lineage studies first based on retroviruses in the embryonic CNS and then by genetic fate mapping in both the prenatal and postnatal CNS have proposed that astroglial cells can be progenitors for neurons and oligodendrocytes. Hence, the population of astroglial cells is increasingly recognized as heterogeneous and diverse, encompassing cell types performing widely different roles in development and plasticity.

View Article and Find Full Text PDF

Midline astroglia in the cerebral cortex develop earlier than other astrocytes through mechanisms that are still unknown. We show that radial glia in dorsomedial cortex retract their apical endfeet at midneurogenesis and translocate to the overlaying pia, forming the indusium griseum. These cells require the fibroblast growth factor receptor 1 (Fgfr1) gene for their precocious somal translocation to the dorsal midline, as demonstrated by inactivating the Fgfr1 gene in radial glial cells and by RNAi knockdown of Fgfr1 in vivo.

View Article and Find Full Text PDF

Background: The combination of the antidepressant fluoxetine (FLX) and the atypical antipsychotic olanzapine (OLA) appears to be more effective for the treatment of resistant depression than single drugs. We hypothesize that such combination may determine a specific modulation of neuroplastic genes, which could contribute to therapeutic activity.

Methods: We investigated the expression of the neurotrophic molecule basic fibroblast growth factor 2 (FGF-2) after acute or chronic administration of FLX and OLA, alone or in combination.

View Article and Find Full Text PDF

We have investigated the role of dopaminergic receptors in modulation of basic fibroblast growth factor (FGF-2) expression in rat prefrontal cortex and hippocampus, two brain regions important for cognition. We found that FGF-2 expression is upregulated by quinpirole, a D2 agonist, in prefrontal cortex and to a lesser extent in hippocampus. This modulation was specific for dopamine D2 receptors because no effect was observed when the dopamine D1 and D3 agonists, SKF38393 and 7-OH-DPAT, respectively, were administered.

View Article and Find Full Text PDF