Publications by authors named "Marable K"

With sensitivity being the Achilles' heel of nuclear magnetic resonance (NMR), the superior mass sensitivity offered by micro-coils can be an excellent choice for tiny, mass limited samples such as eggs and small organisms. Recently, complementary metal oxide semiconductor (CMOS)-based micro-coil transceivers have been reported and demonstrate excellent mass sensitivity. However, the ability of broadband CMOS micro-coils to study heteronuclei has yet to be investigated, and here their potential is explored within the lens of environmental research.

View Article and Find Full Text PDF

The resolving power, chemical sensitivity and non-invasive nature of NMR have made it an established technique for in vivo studies of large organisms both for research and clinical applications. NMR would clearly be beneficial for analysis of entities at the microscopic scale of about 1 nL (the nanoliter scale), typical of early development of mammalian embryos, microtissues and organoids: the scale where the building blocks of complex organisms could be observed. However, the handling of such small samples (about 100 µm) and sensitivity issues have prevented a widespread adoption of NMR.

View Article and Find Full Text PDF

For the first time a single trapped antiproton (p) is used to measure the p magnetic moment μ(p). The moment μ(p)=μ(p)S/(ℏ/2) is given in terms of its spin S and the nuclear magneton (μ(N)) by μ(p)/μ(N)=-2.792 845±0.

View Article and Find Full Text PDF

Previous measurements with a single trapped proton (p) or antiproton (p) detected spin resonance from the increased scatter of frequency measurements caused by many spin flips. Here a measured correlation confirms that individual spin transitions and states are rapidly detected instead. The 96% fidelity and an efficiency expected to approach unity suggests that it may be possible to use quantum jump spectroscopy to measure the p and p magnetic moments much more precisely.

View Article and Find Full Text PDF

As part of an NIH-funded study of malaria pathogenesis, a magnetic resonance (MR) imaging research facility was established in Blantyre, Malaŵi to enhance the clinical characterization of pediatric patients with cerebral malaria through application of neurological MR methods. The research program requires daily transmission of MR studies to Michigan State University (MSU) for clinical research interpretation and quantitative post-processing. An intercontinental satellite-based network was implemented for transmission of MR image data in Digital Imaging and Communications in Medicine (DICOM) format, research data collection, project communications, and remote systems administration.

View Article and Find Full Text PDF

Oral and mandibular trauma pose barriers to oral thermometry. We sought to determine whether temporal artery (TA) scanning thermometry could be an accurate, noninvasive back up method of thermometry in patients with these types of traumatic injury. We compared 3 techniques of TA scanning, axillary thermometry, and oral thermometry in critical care patients.

View Article and Find Full Text PDF