A promising strategy to accelerate joint implant integration and reduce recovery time and failure rates is to deliver a combination of certain growth factors to the integration site. There is a need to control the quantity of growth factors delivered at different times during the healing process to maximize efficacy. Polyelectrolyte multilayer (PEM) films, built using the layer-by-layer (LbL) technique, are attractive for releasing controlled amounts of potent growth factors over a sustained period.
View Article and Find Full Text PDFDrug eluting coatings that can direct the host tissue response to implanted medical devices have the potential to ameliorate both the medical and financial burden of complications from implantation. However, because many drugs useful in this arena are biologic in nature, a paucity of delivery strategies for biologics, including growth factors, currently limits the control that can be exerted on the implantation environment. Layer-by-Layer (LbL) polyelectrolyte multilayer films are highly attractive as ultrathin biologic reservoirs, due to the capability to conformally coat difficult geometries, the use of aqueous processing likely to preserve fragile protein function, and the tunability of incorporation and release profiles.
View Article and Find Full Text PDFFibroblast growth factor 2 (FGF-2) is a potent mediator of stem cell differentiation and proliferation. Although FGF-2 has a well-established role in promoting bone tissue formation, flaws in its delivery have limited its clinical utility. Polyelectrolyte multilayer films represent a novel system for FGF-2 delivery that has promise for local, precisely controlled, and sustained release of FGF-2 from surfaces of interest, including medical implants and tissue engineering scaffolds.
View Article and Find Full Text PDFLayer-by-layer (LbL) films have multiple features that make them attractive for drug delivery, including the potential to sequentially deliver growth factors from implantable medical devices or tissue engineering scaffolds. To date, however, characterization has been lacking for protein delivery from such films. Here, LbL polyelectrolyte films constructed with the model protein lysozyme and a hydrolytically degradable and biocompatible synthetic polycation are characterized.
View Article and Find Full Text PDFOne of the major obstacles in engineering thick, complex tissues such as muscle is the need to vascularize the tissue in vitro. Vascularization in vitro could maintain cell viability during tissue growth, induce structural organization and promote vascularization upon implantation. Here we describe the induction of endothelial vessel networks in engineered skeletal muscle tissue constructs using a three-dimensional multiculture system consisting of myoblasts, embryonic fibroblasts and endothelial cells coseeded on highly porous, biodegradable polymer scaffolds.
View Article and Find Full Text PDFIt is known that excess amounts of Ski, or any member of its proto-oncoprotein family, causes disruption of the transforming growth factor beta signal transduction pathway, thus causing oncogenic transformation of cells. Previous studies indicate that Ski is a relatively unstable protein whose expression levels can be regulated by ubiquitin-mediated proteolysis. Here, we investigate the mechanism by which the stability of Ski is regulated.
View Article and Find Full Text PDF