The corpus callosum-the largest commissural fiber system connecting the two cerebral hemispheres-is considered essential for bilateral sensory integration and higher cognitive functions. Most studies exploring the corpus callosum have examined either the anatomical, physiological, and neurochemical organization of callosal projections or the functional and/or behavioral aspects of the callosal connections after complete/partial callosotomy or callosal lesion. There are no works that address the intrinsic organization of the corpus callosum.
View Article and Find Full Text PDFIntroduction: Functional connectivity (FC) is defined in terms of temporal correlations between physiological signals, which mainly depend upon structural (axonal) connectivity; it is commonly studied using functional magnetic resonance imaging (fMRI). Interhemispheric FC appears mostly supported by the corpus callosum (CC), although several studies investigating this aspect have not provided conclusive evidence. In this context, patients in whom the CC was resected for therapeutic reasons (split-brain patients) provide a unique opportunity for research into this issue.
View Article and Find Full Text PDFThe classic view holds that when "split-brain" patients are presented with an object in the right visual field, they will correctly identify it verbally and with the right hand. However, when the object is presented in the left visual field, the patient verbally states that he saw nothing but nevertheless identifies it accurately with the left hand. This interaction suggests that perception, recognition and responding are separated in the two isolated hemispheres.
View Article and Find Full Text PDFThe surgical section of the corpus callosum (callosotomy) has been frequently demonstrated to result in a left-ear extinction in dichotic listening. That is, callosotomy patients report the left-ear stimulus below chance level, resulting in substantially enhanced right-ear advantage (REA) compared with controls. A small number of previous studies also suggest that callosotomy patients can overcome left-ear extinction when the instruction encourages to attend selectively to the left-ear stimulus.
View Article and Find Full Text PDFThe concept of a topographical map of the corpus callosum (CC), the main interhemispheric commissure, has emerged from human lesion studies and from anatomical tracing investigations in other mammals. Over the last few years, a rising number of researchers have been reporting functional magnetic resonance imaging (fMRI) activation in also the CC. This short review summarizes the functional and behavioral studies performed in groups of healthy subjects and in patients undergone to partial or total callosal resection, and it is focused on the work conducted by the authors.
View Article and Find Full Text PDFBrain functions have been investigated in the past decades via the blood-oxygen-level dependent (BOLD) effect using functional magnetic resonance imaging. One hypothesis explaining the BOLD effect involves the Nitric Oxide (NO) gaseous neurotransmitter, possibly released also by cells in the corpus callosum (CC). The eventual presence of NO releasing neurons and/or glial cells in the CC can be assessed by immunohistochemistry.
View Article and Find Full Text PDFBackground: The scattered tubular cells (STCs) are a population of resident progenitor tubular cells with expansion, self-renewal and epithelial differentiation abilities. Although these cells are localized within the proximal (PTs) and distal (DTs) tubules in a normal adult kidney, their presence has never been demonstrated in human macula densa (MD). The purpose of the present study is to describe the presence of STCs in MD using specific markers such as prominin-1 (CD133), cytokeratin 7 (KRT7) and vimentin (VIM).
View Article and Find Full Text PDFThe study was designed to analyze the nNOS positive neurons present in the indusium griseum by describing their distribution and morphology. To this purpose, sagittal serial sections from paraffin or frozen autopsy specimens of corpus callosum including the overlying indusium griseum were processed by immunohistochemistry and immunofluorescence, using an antibody against the neuronal form of the enzyme nitric oxyde synthase. To test the specificity of the antibody used, Western Blot was performed in the indusium griseum of the same specimens.
View Article and Find Full Text PDFFront Syst Neurosci
December 2021
This study reconsiders behavioral and functional data from studies investigating the anatomical imitation (AI) and the related mental rotation (MR) competence, carried out by our group in healthy subjects, with intact interhemispheric connections, and in split-brain patients, completely or partially lacking callosal connections. The results strongly point to the conclusion that AI and MR competence requires interhemispheric communication, mainly occurring through the corpus callosum, which is the largest white matter structure in the human brain. The results are discussed in light of previous studies and of future implications.
View Article and Find Full Text PDFPrevious research has revealed a strong right bias in allocation of attention in split brain subjects, suggesting that a pathological attention bias occurs not only after unilateral (usually right-hemispheric) damage but also after functional disconnection of intact right-hemispheric areas involved in allocation of attention from those in the left hemisphere. Here, we investigated the laterality bias in spatial attention, as measured with the greyscales task, in two split-brain subjects (D.D.
View Article and Find Full Text PDFSleep spindles of non-REM sleep are transient, waxing-and-waning 10-16 Hz EEG oscillations, whose cortical synchronization depends on the engagement of thalamo-cortical loops. However, previous studies in animal models lacking the corpus callosum due to agenesis or total callosotomy and in humans with agenesis of the corpus callosum suggested that cortico-cortical connections may also have a relevant role in cortical (inter-hemispheric) spindle synchronization. Yet, most of these works did not provide direct quantitative analyses to support their observations.
View Article and Find Full Text PDFNitric oxide (NO) is a gaseous neurotransmitter largely diffused in the brain; among other functions, it regulates the cerebral blood flow in response to hypoxia. NO can be synthetized by three different isoforms of the enzyme NO synthase: neuronal (nNOS), typical of neurons, endothelial and inducible. The aim of this study was to assess nNOS expression in human corpus callosum (CC) astrocytes, and its relationship with the hypoxia duration.
View Article and Find Full Text PDFPerisynaptic astrocytic processes (PAPs) carry out several different functions, from metabolite clearing to control of neuronal excitability and synaptic plasticity. All these functions are likely orchestrated by complex cellular machinery that resides within the PAPs and relies on a fine interplay between multiple subcellular components. However, traditional transmission electron microscopy (EM) studies have found that PAPs are remarkably poor of intracellular organelles, failing to explain how such a variety of PAP functions are achieved in the absence of a proportional complex network of intracellular structures.
View Article and Find Full Text PDFIn common sense experience based on introspection, consciousness is singular. There is only one 'me' and that is the one that is conscious. This means that 'singularity' is a defining aspect of 'consciousness'.
View Article and Find Full Text PDFThe slow waves of non-rapid eye movement (NREM) sleep reflect experience-dependent plasticity and play a direct role in the restorative functions of sleep. Importantly, slow waves behave as traveling waves, and their propagation is assumed to occur through cortico-cortical white matter connections. In this light, the corpus callosum (CC) may represent the main responsible for cross-hemispheric slow-wave propagation.
View Article and Find Full Text PDFThe aim was to analyze the morphology of normal human macula densa (MD), evaluate the cells that may be responsible for its turnover, and collect quantitative data. Of four samples of normal human renal tissue, two were embedded in resin to measure the longitudinal extension and examine the ultrastructure of the MD, the other two were embedded in paraffin to study apoptosis and cell proliferation. The MD is composed of a monolayer tissue about 40 μm long, which includes 35-40 cells arranged in overlapping rows.
View Article and Find Full Text PDFRecently, the discussion regarding the consequences of cutting the corpus callosum ("split-brain") has regained momentum (Corballis, Corballis, Berlucchi, & Marzi, Brain, 141(6), e46, 2018; Pinto et al., Brain, 140(5), 1231-1237, 2017a; Pinto, Lamme, & de Haan, Brain, 140(11), e68, 2017; Volz & Gazzaniga, Brain, 140(7), 2051-2060, 2017; Volz, Hillyard, Miller, & Gazzaniga, Brain, 141(3), e15, 2018). This collective review paper aims to summarize the empirical common ground, to delineate the different interpretations, and to identify the remaining questions.
View Article and Find Full Text PDFType 2 diabetes mellitus (T2DM) has a very high impact on quality of life as it is characterized by disabling complications. There is little evidence about taste alterations in diabetes. Since many individual factors are involved in the onset of diabetes, the purpose of our study is to search a possible link between diabetes and individual taste function.
View Article and Find Full Text PDFThe role of the left and right hemispheres in processing the gender of voices is controversial, some evidence suggesting a bilateral involvement, some others suggesting a right-hemispheric superiority. We investigated this issue in a gender categorization task involving healthy participants and a male split-brain patient: female or male natural voices were presented in one ear during the simultaneous presentation of white noise in the other ear (dichotic listening paradigm). Results revealed faster responses by the healthy participants for stimuli presented in the left than in the right ear, although no asymmetries emerged between the two ears in the accuracy of both the patient and the control group.
View Article and Find Full Text PDFNeuroscientist
August 2021
This comment presents Maria Montessori (1870-1952) and highlights that her child-centered method of education is based on brilliant intuitions, which were confirmed by neuroscience research many decades later, such as the distinction of three critical periods in children's psychobiological development; the importance of the environment in supporting cerebral development and in promoting learning, as well as of affective stimulation in psychological growth and maturation; the specific neural structure of humans that specifically enables the acquisition of a language; the vital role of fine object manipulation in neuropsychological development, and of the physical exercise in brain and nervous system development.
View Article and Find Full Text PDFIn 'split-brain' patients, the corpus callosum has been surgically severed to alleviate medically intractable, severe epilepsy. The classic claim is that after removal of the corpus callosum an object presented in the right visual field will be identified correctly verbally and with the right hand but not with the left hand. When the object is presented in the left visual field the patient verbally states that he saw nothing but nevertheless identifies it accurately with the left hand.
View Article and Find Full Text PDFInformation technology innovations have pushed toward the digitalization of payments. We carried out an exploratory study to understand if and how brain activity can be modulated by the method of payment (cash, card, and smartphone) or the amount of paid money (10€, 50€, 150€), or both. Sixteen healthy, right-handed, volunteers (eight females) underwent a fMRI session, during which 3 runs were presented with block-designed protocol.
View Article and Find Full Text PDF