Publications by authors named "Mara Camaiti"

Article Synopsis
  • * These surfaces offer benefits like self-cleaning and resistance to bacterial adhesion, but have challenges like low durability, transparency issues, and environmental concerns in production.
  • * The review highlights the current limitations of these technologies and presents emerging strategies for improvement, focusing on their effectiveness for building heritage conservation and future applications.
View Article and Find Full Text PDF

Hypothesis: Water and oil inhibition treatment is essential for protecting natural and artificial stone surfaces. Bioinspired super-antiwetting surfaces with "lotus effect", together with superoleophobic properties, can be achieved combining very low-surface-energy materials and suitable surface roughness. Exploiting the natural roughness of stone surfaces, the simple and inexpensive fabrication of superamphiphobic surfaces through the coating dispersion deposition is expected.

View Article and Find Full Text PDF

Paintings on canvas are complex structures created by superimposing layers of different composition. Investigations on the structure of these artworks can provide essential information on their state of conservation, pictorial technique, possible overpaintings, and in planning a proper conservation plan. Standard methods of investigation consist in sampling a limited number of fragments for stratigraphic analyses.

View Article and Find Full Text PDF

Preserving ancient wall paintings from damage has become a challenge over the years. Nanosized calcium hydroxide (Ca(OH)) has been identified as a promising material to preserve wall paintings. However, the synthesis of nanosized Ca(OH) is extremely difficult.

View Article and Find Full Text PDF

The changes in the surface wettability of many materials are receiving increased attention in recent years. It is not too hard to fabricate resistant hydrophobic surfaces through products bearing both hydrophobic and reactive hydrophilic end groups. More challenging is obtaining resistant nonwetting surfaces through noncovalent reversible bonds.

View Article and Find Full Text PDF

Scientists applying magnetic resonance techniques to cultural heritage are now a quite vast and international community, even if these applications are not yet well known outside this community. Not only laboratory experiments but also measurements in the field are now possible, with the use of portable nuclear magnetic resonance (NMR) instruments that enable non-invasive and non-destructive studies on items of any size, of high artistic and historical value as well as diagnosis of their conservation state. The situation was completely different in the second half of the 1990s when our group started working on applications of NMR to cultural heritage, by combining the knowledge of NMR for fluids in porous media at the University of Bologna, with the skilfulness of the chemists for cultural heritage of CNR and University of Florence, and Safeguarding Cultural Heritage Department of Aosta.

View Article and Find Full Text PDF

Nuclear magnetic resonance relaxation analysis of liquid water (1)H nuclei in real porous media, selected for their similar composition (carbonate rocks) and different pore space architecture, polluted with calcium nitrate, is presented to study the kinetics of water condensation and salt deliquescence inside the pore space. These phenomena are responsible for deterioration of porous materials when exposed to environmental injury by pollution in a humid atmosphere. The theory is well described for simple pore geometries, but it is not yet well understood in real porous media with wide distributions of pore sizes and connections.

View Article and Find Full Text PDF

Calcareous stones have been largely used to build historical buildings. Among these, the calcarenites are usually characterized by a high content of calcite and a high open porosity, which make them very sensitive to the weathering caused by physical and chemical agents. In order to prevent their deterioration and to retard their decay, different protective products-mainly polymers-are applied on the stone artefact surfaces.

View Article and Find Full Text PDF

Nuclear magnetic resonance (NMR) portable devices are now being used for nondestructive in situ analysis of water content, pore space structure and protective treatment performance in porous media in the field of cultural heritage. It is a standard procedure to invert T(1) and T(2) relaxation data of fully water-saturated samples to get "pore size" distributions, but the use of T(2) requires great caution. It is well known that dephasing effects due to water molecule diffusion in a magnetic field gradient can affect transverse relaxation data, even if the smallest experimentally available half echo time tau is used in Carr-Purcell-Meiboom-Gill experiments.

View Article and Find Full Text PDF