Background: Selective Cyclin-Dependent Kinase 4/6 inhibitors (CDK4/6i) have revolutionized the treatment of breast cancer and have potential in other cancers, being manageable drugs yet with some bone marrow toxicity. Selective CDK9 inhibitors (CDK9i) never advanced into clinical use, partly due to side effects, including gastrointestinal toxicity, and a small window between activity and cytotoxicity, which results in a narrow therapeutic index (TI).
Method: To overcome the drawbacks of CDK4/6 and CDK9 inhibitors, we have developed myrtleciclib, a selective CDK4/6/9 inhibitor with few non-critical molecular off-targets.
The approval of immune checkpoint inhibitors (ICIs) has revolutionized the management of metastatic renal cell carcinoma (RCC), introducing several ICI-based combinations as the new standard of care for affected patients. Nonetheless, monotherapy with antiangiogenic tyrosine kinase inhibitors (TKIs), such as pazopanib or sunitinib, still represents a first-line treatment option for selected patients belonging to the favorable risk group according to the International mRCC Database Consortium (IMDC) model. After TKI monotherapy, the main second-line option is represented by ICI monotherapy with the anti-Programmed Death Receptor 1(PD-1) nivolumab.
View Article and Find Full Text PDFOsimertinib, a tyrosine kinase inhibitor targeting mutant EGFR, has received approval for initial treatment in patients with Non-Small Cell Lung Cancer (NSCLC). While effective in both first- and second-line treatments, patients eventually develop acquired resistance. Metabolic reprogramming represents a strategy through which cancer cells may resist and adapt to the selective pressure exerted by the drug.
View Article and Find Full Text PDFBackground: Cell-cycle regulators are mutated in approximately 40% of all cancer types and have already been linked to worse outcomes in non-small cell lung cancer adenocarcinomas treated with osimertinib. However, their exact role in osimertinib resistance has not been elucidated.
Objective: In this study, we aimed to evaluate how the CDK4/6-Rb axis may affect the sensitivity to osimertinib.
Malignant pleural mesothelioma is an asbestos-related tumor originating in mesothelial cells of the pleura that poorly responds to chemotherapeutic approaches. Adult mesenchymal stromal cells derived either from bone marrow or from adipose tissue may be considered a good model for cell-based therapy, a treatment which has experienced significant interest in recent years. The present study confirms that Paclitaxel is effective on mesothelioma cell proliferation in 2D and 3D in vitro cultures, and that 80,000 mesenchymal stromal cells loaded with Paclitaxel inhibit tumor growth at a higher extent than Paclitaxel alone.
View Article and Find Full Text PDFBackground: Malignant pleural mesothelioma is a pathology with no effective therapy and a poor prognosis. Our previous study demonstrated an in vitro inhibitory effect on mesothelioma cell lines of both the lysate and secretome of adipose tissue-derived Mesenchymal Stromal Cells. The inhibitory activity on tumor growth has been demonstrated also : five million Mesenchymal Stromal Cells, injected , produced a significant therapeutic efficacy against MSTO-211H xenograft equivalent to that observed after the systemic administration of paclitaxel.
View Article and Find Full Text PDFBackground: The loss of the (cyclin-dependent kinase inhibitor 2A/alternative reading frame) gene is the most common alteration in malignant pleural mesothelioma (MPM), with an incidence of about 70%, thus representing a novel target for mesothelioma treatment. In the present study, we evaluated the antitumor potential of combining the standard chemotherapy regimen used for unresectable MPM with the CDK4/6 (cyclin-dependent kinase 4 or 6) inhibitor abemaciclib.
Methods: Cell viability, cell death, senescence, and autophagy induction were evaluated in two MPM cell lines and in a primary MPM cell culture.
Hepatocellular carcinoma (HCC) is the most frequent primary liver cancer with a poor prognosis and limited treatment options. Considering that alterations of the CDK4/6-cyclin D-Rb pathway occur frequently in HCC, we tested the efficacy of two CDK4/6 inhibitors, abemaciclib and ribociclib, in combination with lenvatinib, a multi-kinase inhibitor approved as first-line therapy for advanced HCC, in a panel of HCC Rb-expressing cell lines. The simultaneous drug combinations showed a superior anti-proliferative activity as compared with single agents or sequential schedules of treatment, either in short or in long-term experiments.
View Article and Find Full Text PDFBackground: Malignant Pleural Mesothelioma (MPM) is an aggressive tumor that has a significant incidence related to asbestos exposure with no effective therapy and poor prognosis. The role of mesenchymal stromal cells (MSCs) in cancer is controversial due to their opposite effects on tumor growth and in particular, only a few data are reported on MSCs and MPM.
Methods: We investigated the in vitro efficacy of adipose tissue-derived MSCs, their lysates and secretome against different MPM cell lines.
Malignant pleural mesothelioma (MPM) is a rare and aggressive malignant disease affecting the mesothelium, commonly associated to asbestos exposure. The current therapeutic actions, based on cisplatin/pemetrexed treatment, are limited due to the late stage at which most patients are diagnosed and to the intrinsic chemo-resistance of the tumor. Another relevant point is the absence of approved therapies in the second line setting following progression of MPM after chemotherapy.
View Article and Find Full Text PDFAbemaciclib is an inhibitor of cyclin-dependent kinases (CDK) 4 and 6 that inhibits the transition from the G1 to the S phase of the cell cycle by blocking downstream CDK4/6-mediated phosphorylation of Rb. The effects of abemaciclib alone or combined with the third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) osimertinib were examined in a panel of PC9 and HCC827 osimertinib-resistant non-small cell lung cancer (NSCLC) cell lines carrying EGFR-dependent or -independent mechanisms of intrinsic or acquired resistance. Differently from sensitive cells, all the resistant cell lines analyzed maintained p-Rb, which may be considered as a biomarker of osimertinib resistance and a potential target for therapeutic intervention.
View Article and Find Full Text PDFAdvanced hepatocarcinoma (HCC) is an aggressive malignancy with poor prognosis and limited treatment options. Alterations of the cyclin D-CDK4/6-Rb pathway occur frequently in HCC, providing the rationale for its targeting at least in a molecular subset of HCC. In a panel of HCC cell lines, we investigated whether the CDK4/6 inhibitor palbociclib might improve the efficacy of regorafenib, a powerful multi-kinase inhibitor approved as second-line treatment for advanced HCC after sorafenib failure and currently under clinical investigation as first-line therapy in combination with immunotherapy.
View Article and Find Full Text PDF: Malignant pleural mesothelioma (MPM) is an aggressive malignancy associated to asbestos exposure. One of the most frequent genetic alteration in MPM patients is loss, leading to aberrant activation of the Rb pathway. In MPM cells, we previously demonstrated the therapeutic efficacy of targeting this signaling with the CDK4/6 inhibitor palbociclib in combination with PI3K/mTOR inhibitors.
View Article and Find Full Text PDFImmunotherapy has significantly changed the treatment landscape for advanced non-small-cell lung cancer (NSCLC) with the introduction of drugs targeting programmed cell death protein-1 (PD-1) and programmed cell death ligand-1 (PD-L1). In particular, the addition of the anti-PD-1 antibody pembrolizumab to platinum-pemetrexed chemotherapy resulted in a significantly improved overall survival in patients with non-squamous NSCLC, regardless of PD-L1 expression. In this preclinical study, we investigated whether chemotherapy can modulate PD-L1 expression in non-squamous NSCLC cell lines, thus potentially affecting immunotherapy efficacy.
View Article and Find Full Text PDFDysregulation of the cell cycle is a hallmark of cancer that leads to aberrant cellular proliferation. CDK4/6 are cyclin-dependent kinases activated in response to proliferative signaling, which induce RB hyper-phosphorylation and hence activation of E2F transcription factors, thus promoting cell cycle progression through the S phase. Pharmacologic inhibition of CDK4/6 by palbociclib, ribociclib, or abemaciclib has been showing promising activity in multiple cancers with the best results achieved in combination with other agents.
View Article and Find Full Text PDFTriple Negative Breast Cancer (TNBC) is a challenging disease due to the lack of druggable targets; therefore, chemotherapy remains the standard of care and the identification of new targets is a high clinical priority. Alterations in the components of the cell cycle machinery have been frequently reported in cancer; given the success obtained with the CDK4/6 inhibitor palbocicib in ER-positive BC, we explored the potential of combining this drug with chemotherapy in Rb-positive TNBC cell models. The simultaneous combination of palbociclib with paclitaxel exerted an antagonistic effect; by contrast, the sequential treatment inhibited cell proliferation and increased cell death more efficaciously than single treatments.
View Article and Find Full Text PDFBackground: Osimertinib is a new third-generation, epidermal growth factor receptor-tyrosine kinase inhibitor highly selective for the epidermal growth factor receptor with both activating and T790M mutations. A recent phase III trial showed a statistically significant progression-free survival benefit with osimertinib vs. gefitinib or erlotinib as first-line treatment for EGFR-mutated non-small cell lung cancer, and preliminary data are available on resistance mechanisms to first-line osimertinib therapy.
View Article and Find Full Text PDFBackground: The third generation Epidermal Growth Factor Receptor (EGFR) Tyrosine Kinase Inhibitor (TKI) osimertinib has been initially approved for T790M positive Non-Small Cell Lung Cancer (NSCLC) and more recently for first-line treatment of EGFR-mutant T790M negative NSCLC patients. Similarly to previous generation TKIs, despite the high response rate, disease progression eventually occurs and current clinical research is focused on novel strategies to delay the emergence of osimertinib resistance. In this study we investigated the combination of osimertinib with pemetrexed or cisplatin in EGFR-mutated NSCLC cell lines and xenografts.
View Article and Find Full Text PDFFibroblast Growth Factor Receptors (FGFR1-4) have a critical role in the progression of several human cancers, including Squamous Non-Small-Cell Lung Cancer (SQCLC). Both non-selective and selective reversible FGFR inhibitors are under clinical investigation for the treatment of patients with tumors harboring FGFR alterations. Despite their potential efficacy, the clinical development of these drugs has encountered several challenges, including toxicity, and the appearance of drug resistance.
View Article and Find Full Text PDFSecond- and third-generation inhibitors of EGFR possess an acrylamide group which alkylates Cys797, allowing to overcome resistance due to insurgence of T790M mutation. Less reactive warheads, yet capable to bind the target cysteine, may be useful to design newer and safer inhibitors. In the present work, we synthesized a 2-chloro-N-(4-(phenylamino)quinazolin-6-yl)acetamide (8) derivative as a prototype of EGFR inhibitor potentially able to react with Cys797 by nucleophilic substitution.
View Article and Find Full Text PDFBackground: Osimertinib is a third-generation EGFR-TKI with a high selective potency against T790M-mutant NSCLC patients. Considering that osimertinib can lead to enhanced HER-2 expression on cell surface and HER-2 overexpression is a mechanism of resistance to osimertinib, this study was addressed to investigate the potential of combining osimertinib with trastuzumab emtansine (T-DM1) in order to improve the efficacy of osimertinib and delay or overcome resistance in NSCLC cell lines with EGFR activating mutation and with T790M mutation or HER-2 amplification.
Methods: The effects of osimertinib combined with T-DM1 on cell proliferation, cell cycle, cell death, antibody-dependent cell-mediated cytotoxicity (ADCC), and acquisition of osimertinib resistance was investigated in PC9, PC9-T790M and H1975 cell lines.