Publications by authors named "Mara Angelini"

Indomethacin, a cyclooxygenase-1 and -2 inhibitor widely used in the clinic for its potent anti-inflammatory/analgesic properties, possesses antiviral activity against several viral pathogens; however, the mechanism of antiviral action remains elusive. We have recently shown that indomethacin activates the double-stranded RNA (dsRNA)-dependent protein kinase R (PKR) in human colon cancer cells. Because of the important role of PKR in the cellular defence response against viral infection, herein we investigated the effect of indomethacin on PKR activity during infection with the prototype rhabdovirus vesicular stomatitis virus.

View Article and Find Full Text PDF

Rotaviruses, nonenveloped viruses presenting a distinctive triple-layered particle architecture enclosing a segmented double-stranded RNA genome, exhibit a unique morphogenetic pathway requiring the formation of cytoplasmic inclusion bodies called viroplasms in a process involving the nonstructural viral proteins NSP5 and NSP2. In these structures the concerted packaging and replication of the 11 positive-polarity single-stranded RNAs take place to generate the viral double-stranded RNA (dsRNA) genomic segments. Rotavirus infection is a leading cause of gastroenteritis-associated severe morbidity and mortality in young children, but no effective antiviral therapy exists.

View Article and Find Full Text PDF

The heat-shock response, a fundamental defense mechanism against proteotoxic stress, is regulated by a family of heat-shock transcription factors (HSF). In humans HSF1 is considered the central regulator of heat-induced transcriptional responses. The main targets for HSF1 are specific promoter elements (HSE) located upstream of heat-shock genes encoding cytoprotective heat-shock proteins (HSP) with chaperone function.

View Article and Find Full Text PDF

The NSAID (non-steroidal anti-inflammatory drug) indomethacin, a cyclo-oxygenase-1 and -2 inhibitor with anti-inflammatory and analgesic properties, is known to possess anticancer activity against CRC (colorectal cancer) and other malignancies in humans; however, the mechanism underlying the anticancer action remains elusive. In the present study we show that indomethacin selectively activates the dsRNA (double-stranded RNA)-dependent protein kinase PKR in a cyclo-oxygenase-independent manner, causing rapid phosphorylation of eIF2α (the α-subunit of eukaryotic translation initiation factor 2) and inhibiting protein synthesis in colorectal carcinoma and other types of cancer cells. The PKR-mediated translational block was followed by inhibition of CRC cell proliferation and apoptosis induction.

View Article and Find Full Text PDF

RPS19 has been identified as the first gene associated with Diamond-Blackfan anemia (DBA), a rare congenital hypoplastic anemia that includes variable physical malformations. It is mutated in approximately 25% of the patients although doubts remain as to whether DBA clinical phenotype depends on the ribosomal function of RPS19 or on an extra-ribosomal role or on both. RPS19 mRNAs with mutations that introduce premature stop codons or eliminate it are rapidly turned over by the surveillance mechanisms possibly causing a decrease in the RPS19 protein level.

View Article and Find Full Text PDF

Background And Objectives: Diamond Blackfan anemia (DBA) is a congenital disease characterized by defective erythroid progenitor maturation. Patients' bone marrow progenitor cells do not respond to erythropoietic growth factors, such as erythropoietin. Mutations in the gene encoding for ribosomal protein (RP) S19 account for 25% of cases of DBA.

View Article and Find Full Text PDF

Mutations in the ribosomal protein (RP)S19 gene have been found in about 25% of the cases of Diamond-Blackfan anemia (DBA), a rare congenital hypoplastic anemia that includes variable physical malformations. Various mutations have been identified in the RPS19 gene, but no investigations regarding the effect of these alterations on RPS19 mRNA levels have been performed. It is well established that mutated mRNA containing a premature stop codon (PTC) or lacking a stop codon can be rapidly degraded by specific mechanisms called nonsense mediated decay (NMD) and nonstop decay.

View Article and Find Full Text PDF

Although the pharmacological role of beta-carotene in the prevention and treatment of colon cancer has received increasing attention, little is known about the molecular mechanisms of action of this carotenoid. The present study demonstrates that beta-carotene, a natural pigment widely present in fruit and vegetables, inhibits the growth of several human colon adenocarcinoma cell lines (COLO 320 HSR, LS-174, HT-29 and WiDr) by inducing cell cycle arrest in G(2)/M phase and apoptosis. These effects were dose and time dependent and strictly related to cell ability to accumulate the carotenoid.

View Article and Find Full Text PDF