Publications by authors named "Mar Gonzalez-Porta"

Article Synopsis
  • Structural variants (SVs) play a crucial role in genetic differences that relate to traits and diseases, but most research has focused on European populations.
  • This study compiles a catalogue of over 73,000 SVs from a diverse group of 8,392 Singaporeans, revealing that about 65% of these SVs are novel and specific to Asian ancestry groups.
  • The findings help identify clinically relevant SVs and improve genetic research by addressing biases related to ancestry, which is important for equity and diversity in the field.
View Article and Find Full Text PDF

Cytochrome P450 2D6 (CYP2D6) plays a crucial role in metabolizing approximately 20% of medications prescribed clinically. This enzyme is encoded by the CYP2D6 gene, known for its extensive polymorphism with over 170 catalogued haplotypes or star alleles, which can have a profound impact on drug efficacy and safety. Despite its importance, a gap exists in the global genomic databases, which are predominantly representative of European ancestries, thereby limiting comprehensive knowledge of CYP2D6 variation in ethnically diverse populations.

View Article and Find Full Text PDF

Microarrays are a well-established and widely adopted technology capable of interrogating hundreds of thousands of loci across the human genome. Combined with imputation to cover common variants not included in the chip design, they offer a cost-effective solution for large-scale genetic studies. Beyond research applications, this technology can be applied for testing pharmacogenomics, nutrigenetics, and complex disease risk prediction.

View Article and Find Full Text PDF

Asian populations are under-represented in human genomics research. Here, we characterize clinically significant genetic variation in 9051 genomes representing East Asian, South Asian, and severely under-represented Austronesian-speaking Southeast Asian ancestries. We observe disparate genetic risk burden attributable to ancestry-specific recurrent variants and identify individuals with variants specific to ancestries discordant to their self-reported ethnicity, mostly due to cryptic admixture.

View Article and Find Full Text PDF

Ticks cause massive damage to livestock and vaccines are one sustainable alternative for the acaricide poisons currently heavily used to control infestations. An experimental vaccine adjuvanted with alum and composed by four recombinant salivary antigens mined with reverse vaccinology from a transcriptome of salivary glands from ticks was previously shown to present an overall efficacy of 73.2% and cause a significant decrease of tick loads in artificially tick-infested, immunized heifers; this decrease was accompanied by increased levels of antigen-specific IgG1 and IgG2 antibodies, which were boosted during a challenge infestation.

View Article and Find Full Text PDF

In the version of this article initially published online, two pairs of headings were switched with each other in Table 4: "Recall (PCR free)" was switched with "Recall (with PCR)," and "Precision (PCR free)" was switched with "Precision (with PCR)." The error has been corrected in the print, PDF and HTML versions of this article.

View Article and Find Full Text PDF

Standardized benchmarking approaches are required to assess the accuracy of variants called from sequence data. Although variant-calling tools and the metrics used to assess their performance continue to improve, important challenges remain. Here, as part of the Global Alliance for Genomics and Health (GA4GH), we present a benchmarking framework for variant calling.

View Article and Find Full Text PDF

Despite efforts for extensive molecular characterization of cancer patients, such as the international cancer genome consortium (ICGC) and the cancer genome atlas (TCGA), the heterogeneous nature of cancer and our limited knowledge of the contextual function of proteins have complicated the identification of targetable genes. Here, we present Aberration Hub Analysis for Cancer (AbHAC) as a novel integrative approach to pinpoint aberration hubs, i.e.

View Article and Find Full Text PDF

Alternative splicing is a critical determinant of genome complexity and, by implication, is assumed to engender proteomic diversity. This notion has not been experimentally tested in a targeted, quantitative manner. Here, we have developed an integrative approach to ask whether perturbations in mRNA splicing patterns alter the composition of the proteome.

View Article and Find Full Text PDF

Background: Sequential assembly of the human spliceosome on RNA transcripts regulates splicing across the human transcriptome. The core spliceosome component PRPF8 is essential for spliceosome assembly through its participation in ribonucleoprotein (RNP) complexes for splice-site recognition, branch-point formation and catalysis. PRPF8 deficiency is linked to human diseases like retinitis pigmentosa or myeloid neoplasia, but its genome-wide effects on constitutive and alternative splicing remain unclear.

View Article and Find Full Text PDF

Post-transcriptional regulation of mRNA by the RNA-binding protein HuR (encoded by Elavl1) is required in B cells for the germinal center reaction and for the production of class-switched antibodies in response to thymus-independent antigens. Transcriptome-wide examination of RNA isoforms and their abundance and translation in HuR-deficient B cells, together with direct measurements of HuR-RNA interactions, revealed that HuR-dependent splicing of mRNA affected hundreds of transcripts, including that encoding dihydrolipoamide S-succinyltransferase (Dlst), a subunit of the 2-oxoglutarate dehydrogenase (α-KGDH) complex. In the absence of HuR, defective mitochondrial metabolism resulted in large amounts of reactive oxygen species and B cell death.

View Article and Find Full Text PDF

The incidence of renal cell carcinoma (RCC) is increasing worldwide, and its prevalence is particularly high in some parts of Central Europe. Here we undertake whole-genome and transcriptome sequencing of clear cell RCC (ccRCC), the most common form of the disease, in patients from four different European countries with contrasting disease incidence to explore the underlying genomic architecture of RCC. Our findings support previous reports on frequent aberrations in the epigenetic machinery and PI3K/mTOR signalling, and uncover novel pathways and genes affected by recurrent mutations and abnormal transcriptome patterns including focal adhesion, components of extracellular matrix (ECM) and genes encoding FAT cadherins.

View Article and Find Full Text PDF

As exome sequencing gives way to genome sequencing, the need to interpret the function of regulatory DNA becomes increasingly important. To test whether evolutionary conservation of cis-regulatory modules (CRMs) gives insight into human gene regulation, we determined transcription factor (TF) binding locations of four liver-essential TFs in liver tissue from human, macaque, mouse, rat, and dog. Approximately, two thirds of the TF-bound regions fell into CRMs.

View Article and Find Full Text PDF

Genome sequencing projects are discovering millions of genetic variants in humans, and interpretation of their functional effects is essential for understanding the genetic basis of variation in human traits. Here we report sequencing and deep analysis of messenger RNA and microRNA from lymphoblastoid cell lines of 462 individuals from the 1000 Genomes Project--the first uniformly processed high-throughput RNA-sequencing data from multiple human populations with high-quality genome sequences. We discover extremely widespread genetic variation affecting the regulation of most genes, with transcript structure and expression level variation being equally common but genetically largely independent.

View Article and Find Full Text PDF

Background: RNA sequencing has opened new avenues for the study of transcriptome composition. Significant evidence has accumulated showing that the human transcriptome contains in excess of a hundred thousand different transcripts. However, it is still not clear to what extent this diversity prevails when considering the relative abundances of different transcripts from the same gene.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) constitute an important class of gene regulators. While models have been proposed to explain their appearance and expansion, the validation of these models has been difficult due to the lack of comparative studies. Here, we analyze miRNA evolutionary patterns in two mammals, human and mouse, in relation to the age of miRNA families.

View Article and Find Full Text PDF

DNA arrays have been widely used to perform transcriptome-wide analysis of gene expression, and many methods have been developed to measure gene expression variability and to compare gene expression between conditions. Because RNA-seq is also becoming increasingly popular for transcriptome characterization, the possibility exists for further quantification of individual alternative transcript isoforms, and therefore for estimating the relative ratios of alternative splice forms within a given gene. Changes in splicing ratios, even without changes in overall gene expression, may have important phenotypic effects.

View Article and Find Full Text PDF