Transcription factor-mediated cell conversion has been reported in the central nervous system of both rodents and nonhuman primates. In particular, glia-to-neuron conversion has been achieved in the brain and spinal cord of animal models for neural regeneration and repair. However, whether glia-to-neuron conversion can be used for brain repair in humans needs to be explored.
View Article and Find Full Text PDFGlioblastoma is the most common malignant tumor in the central nervous system and its occurrence and development is involved in various molecular abnormalities. C-X-C chemokine ligand 10 (CXCL10), an inflammatory chemokine, has been reported to be related to the pathogenesis of cancer while it has not yet been linked to glioma. Calycosin, a bioactive compound derived from Radix astragali, has demonstrated anticancer properties in several malignancies, including glioma.
View Article and Find Full Text PDFBackground: We retrospectively analyzed the effects of low-dose bevacizumab (BEV) combined with temozolomide (TMZ) on health-related quality of life (HRQL) in patients with recurrent high-grade glioma (rHGG).
Methods: A total of 129 patients with rHGG were included in this study. Patients were divided into a combination group and TMZ group based on the treatment they received.
Epoxyeicosatrienoic acids with anti-inflammatory effects are inactivated by soluble epoxide hydrolase (sEH). Both sEH and histone deacetylase 6 (HDAC6) inhibitors are being developed as neuropathic pain relieving agents. Based on the structural similarity, we designed a new group of compounds with inhibition of both HDAC6 and sEH and obtained compound .
View Article and Find Full Text PDFAlzheimer's disease, the commonest cause of dementia, is a growing global health concern with huge implications for individuals and society. Stroke has still been a significant challenge in clinics for a long time, which is the second leading cause of death in the world, especially ischemic stroke. Both Alzheimer's disease and stroke are closely related to oxidative stress and HIF-1 signaling pathways in nerve cells.
View Article and Find Full Text PDFIn recent years, it has been proposed that G9a/EZH2 dual inhibition is a promising cancer treatment strategy. Herein, we present the discovery of G9a/EZH2 dual inhibitors that merge the pharmacophores of G9a and EZH2 inhibitors. Among them, the most promising compound displayed potent inhibitory activities against G9a (IC = 2.
View Article and Find Full Text PDFSoluble epoxide hydrolase (sEH) has been identified as an attractive target for anti-inflammatory drug design in recent years. Picomolar level compound against sEH was obtained by introducing the hydrophilic group homopiperazine and hydrophobic fragment propionyl onto the structure of lead compound . showed good microsomal stability, a moderate plasma protein binding rate, and good oral bioavailability and was well tolerated in rats.
View Article and Find Full Text PDFThe conventional treatment for the resection of cervical spinal tumors comprises anterior, posterior, and combined surgical approaches. However, these approaches have certain limitations when tumors invade the vertebrae, vertebral artery, or spinal nerves. Herein, we report an interesting case where a 45-year-old patient was admitted for neck pain.
View Article and Find Full Text PDFMatrix attachment regions (MARs) can enhance transgene expression levels and maintain stability. However, the consensus sequence from MARs and its functional analysis remains to be examined. Here, we assessed a possible consensus sequence from MARs and assessed its activity in stably transfected Chinese hamster ovary (CHO) cells.
View Article and Find Full Text PDFHistone deacetylase 1 (HDAC1) plays a crucial role in cancer progression and development. This enzyme has been confirmed to be a key regulator of tumor biology functions, such as tumor cell proliferation, migration and invasion. However, HDAC1 expression in glioma remains controversial, and its specific function and molecular mechanism in glioblastoma is poorly understood.
View Article and Find Full Text PDFTransplantation of human amniotic mesenchymal stem cells (hAM-MSCs) seems to be a promising strategy for the treatment of neurodegenerative disorders, including Alzheimer's disease (AD). However, the clinical therapeutic effects of hAM-MSCs and their mechanisms of action in AD remain to be determined. Here, we used amyloid precursor protein (APP) and presenilin1 (PS1) double-transgenic mice to evaluate the effects of hAM-MSC transplantation on AD-related neuropathology and cognitive dysfunction.
View Article and Find Full Text PDFHuman amniotic membrane mesenchymal stem cells (hAMSCs) are considered ideal candidate stem cells for cell-based therapy. In this study, we assessed whether hAMSCs transplantation promotes neurological functional recovery in rats after traumatic spinal cord injury (SCI). In addition, the potential mechanisms underlying the possible benefits of this therapy were investigated.
View Article and Find Full Text PDFIt has been reported previously that the expression of glucose transporter member 3 (GLUT3) is increased in malignant glioma cells compared with normal glial cells. However, the regulating mechanism that causes this phenomenon remains unknown. The present study investigated the regulating role of transcription factor specific protein 1 (Sp1) in GLUT3 expression in a human glioma cell line.
View Article and Find Full Text PDFInduced neural stem cells (iNSCs) can be directly transdifferentiated from somatic cells. One potential clinical application of the iNSCs is for nerve regeneration. However, it is unknown whether iNSCs function in disease models.
View Article and Find Full Text PDFAlzheimer's disease (AD) is associated with the inflammatory response in response to amyloid β-peptide (Aβ). Previous studies have suggested that paeoniflorin (PF) shows anti-inflammatory and neuroprotective effects in inflammation-related diseases. However, the impacts of PF on AD have not been investigated.
View Article and Find Full Text PDFLamotrigine (LTG), a broad-spectrum anti-epileptic drug widely used in treatment for seizures, shows potential efficacy in Alzheimer's disease (AD) therapy. Chronic LTG treatment rescues the suppressed long-term potentiation, loss of spines and cognitive deficits in AβPP/PS1 mice, known to overexpress a chimeric mouse/human mutant amyloid-β protein precursor (AβPP) and a mutant human presenilin 1 (PS1). These changes are accompanied by reduction of amyloid-β (Aβ) plaques density and of levels of β-C-terminal fragment of AβPP (β-CTF), a fragment of AβPP cleaved by β-secretase.
View Article and Find Full Text PDFGlioma is an aggressive tumor with poor prognosis. Identification of precise prognostic marker and effective therapeutic target is important in the treatment of glioma. HTATIP2 is a novel tumor suppressor gene, which is frequently silenced by epigenetic mechanisms in many caners.
View Article and Find Full Text PDFHyperactivity and its compensatory mechanisms may causally contribute to synaptic and cognitive deficits in Alzheimer's disease (AD). Blocking the overexcitation of the neural network, with levetiracetam (LEV), a sodium channel blocker applied in the treatment of epilepsy, prevented synaptic and cognitive deficits in human amyloid precursor protein (APP) transgenic mice. This study has brought the potential use of antiepileptic drugs (AEDs) in AD therapy.
View Article and Find Full Text PDFLate embryogenesis abundant (LEA) proteins accumulate to high levels during the late stage of seed maturation and in response to water deficit, and are involved in protecting higher plants from damage caused by environmental stresses, especially drought. In the present study, a novel maize (Zea mays L.) group 3 LEA gene, ZmLEA3, was identified and later characterized using transgenic tobacco plants to investigate its functions in abiotic and biotic stresses.
View Article and Find Full Text PDFAlthough human amnion derived mesenchymal stem cells (AMSC) are a promising source of stem cells, their therapeutic potential for traumatic brain injury (TBI) has not been widely investigated. In this study, we evaluated the therapeutic potential of AMSC using a rat TBI model. AMSC were isolated from human amniotic membrane and characterized by flow cytometry.
View Article and Find Full Text PDFTenascin-R (TN-R) is a neural specific protein and an important molecule involved in inhibition of axonal regeneration after spinal cord injury (SCI). Here we report on rabbit-derived TN-R polyclonal antibody, which acts as a TN-R antagonist with high titer and high specificity, promoted neurite outgrowth and sprouting of rat cortical neurons cultured on the inhibitory TN-R substrate in vitro. When locally administered into the lesion sites of rats received spinal cord dorsal hemisection, these TN-R antibodies could significantly decrease RhoA activation and improve functional recovery from corticospinal tract (CST) transection.
View Article and Find Full Text PDFMitogen-activated protein kinase (MAPK) cascades are important intracellular signaling modules and function as a convergent point for crosstalk during abiotic stress signaling. In this article, we isolated a novel group B MAPKK gene, ZmMKK3, from Zea mays. ZmMKK3 protein might be localized in both the cytoplasm and the nucleus.
View Article and Find Full Text PDFPlant mitogen-activated protein kinase (MAPK) cascades play a pivotal role in a range of biotic and abiotic stress responses. In this study, we isolated a novel group D MAPK gene, ZmMPK17, from maize (Zea mays L.).
View Article and Find Full Text PDFTransdifferentiated and untransdifferentiated mesenchymal stem cells (MSCs) have shown therapeutic benefits in central nervous system (CNS) injury. However, it is unclear which would be more appropriate for transplantation. To address this question, we transplanted untransdifferentiated human umbilical mesenchymal stem cells (HUMSCs) and transdifferentiated HUMSCs (HUMSC-derived neurospheres, HUMSC-NSs) into a rat model of traumatic brain injury.
View Article and Find Full Text PDFMitogen-activated protein kinase kinase (MAPKKs) are important components of MAPK cascades, which are universal signal transduction modules and play important role in regulating both plant development and biotic or abiotic stress responses. In this study, we identified the group C MAPKK gene, ZmMKK4, in maize (Zea mays L.).
View Article and Find Full Text PDF