Micromachines (Basel)
November 2023
To address the concerns with power consumption and processing efficiency in big-size data processing, sparse coding in computing-in-memory (CIM) architectures is gaining much more attention. Here, a novel Flash-based CIM architecture is proposed to implement large-scale sparse coding, wherein various matrix weight training algorithms are verified. Then, with further optimizations of mapping methods and initialization conditions, the variation-sensitive training (VST) algorithm is designed to enhance the processing efficiency and accuracy of the applications of image reconstructions.
View Article and Find Full Text PDFMicromachines (Basel)
April 2023
Flash memory-based computing-in-memory (CIM) architectures have gained popularity due to their remarkable performance in various computation tasks of data processing, including machine learning, neuron networks, and scientific calculations. Especially in the partial differential equation (PDE) solver that has been widely utilized in scientific calculations, high accuracy, processing speed, and low power consumption are the key requirements. This work proposes a novel flash memory-based PDE solver to implement PDE with high accuracy, low power consumption, and fast iterative convergence.
View Article and Find Full Text PDF