Gliomas are primary tumors that originate in the central nervous system. The conventional treatment options for gliomas typically encompass surgical resection and temozolomide (TMZ) chemotherapy. However, despite aggressive interventions, the median survival for glioma patients is merely about 14.
View Article and Find Full Text PDFScope: Depression, a prevalent mental disorder, has significantly impacted the lives of 350 million people, yet it holds promise for amelioration through food-derived phenolics. Raspberries, renowned globally for their delectable flavor, harbor a phenolic compound known as raspberry ketone (RK). However, the impact of RK on depressive symptoms remains ambiguous.
View Article and Find Full Text PDFThe pathogenesis of glioma has remained unclear. In this study, it was found that high expression of the outer dense fibers of sperm tail 3B (ODF3B) in gliomas was positively correlated with the grade of glioma. The higher the grade, the worse the prognosis.
View Article and Find Full Text PDFGlioma is a frequently occurring type of cancer that affects the central nervous system. Despite the availability of standardized treatment options including surgical resection, concurrent radiotherapy, and adjuvant temozolomide (TMZ) therapy, the prognosis for glioma patients is often unfavorable. Exosomes act as vehicles for intercellular communication, contributing to tissue repair, immune modulation, and the transfer of metabolic cargo to recipient cells.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are endogenous short non-encoding RNAs which play a critical role on the output of the proteins, and influence multiple biological characteristics of the cells and physiological processes in the body. Mesenchymal stem/stromal cells (MSCs) are adult multipotent stem cells and characterized by self-renewal and multidifferentiation and have been widely used for disease treatment and regenerative medicine. Meanwhile, MSCs play a critical role in maintaining homeostasis in the body, and dysfunction of MSC differentiation leads to many diseases.
View Article and Find Full Text PDFThe autoimmune diseases are characterized by overactivation of immune cells, chronic inflammation, and immune response to self-antigens, leading to the damage and dysfunction of multiple organs. Patients still do not receive desired clinical outcomes while suffer from various adverse effects imparted by current therapies. The therapeutic strategies based on mesenchymal stromal cell (MSC) transplantation have become the promising approach for the treatment of autoimmune diseases due to the immunomodulation property of MSCs.
View Article and Find Full Text PDFBackground: The umbilical cord blood (UCB) has been widely accepted as an alternative source of hematopoietic stem/progenitor cells (HSPCs) for transplantation, and its use in adults is still restricted because of low absolute numbers. To overcome this obstacle, expansion of UCB-HSPCs under feeder cell-based coculture is a promising possibility. In this study, we explored UCB-CD34+ cells ex vivo expansion using Wharton's jelly mesenchymal stem cells (WJ-MSCs) or umbilical vein endothelial cells (UVECs) as feeder layer-based serum-free coculture system with a cocktail of cytokines.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) have proven powerful potential for cell-based therapy both in regenerative medicine and disease treatment. Human umbilical cords and exfoliated deciduous teeth are the main sources of MSCs with no donor injury or ethical issues. The goal of this study was to investigate the differences in the biological characteristics of human umbilical cord mesenchymal stem cells (UCMSCs) and stem cells from human exfoliated deciduous teeth (SHEDs).
View Article and Find Full Text PDFCurrent treatment options for hypoxic-ischemic encephalopathy (HIE) are limited. Human umbilical cord mesenchymal stem cells (UC-MSCs) and cord blood mononuclear cells (CB-MNCs) offer great potential for the treatment of many neurological diseases. The aim of the present study was to identify which cell type is more effective for the treatment of HIE.
View Article and Find Full Text PDFBackground: The physiological approach suggests that an environment associating mesenchymal stromal cells with low O concentration would be most favorable for the maintenance of hematopoietic stem/progenitor cells (HSPCs). To test this hypothesis, we performed a coculture of cord blood CD34 cells with Wharton's jelly mesenchymal stem cells (WJ-MSCs) under different O concentration to simulate the growth of HSPCs in vivo, and assessed the impacts on stemness maintenance and proliferation of cord blood HSPCs in vitro.
Methods: CD34 cells derived from cord blood were isolated and cocultured under 1%, 3%, or 20% O concentrations with irradiated WJ-MSCs without adding exogenous cytokines for 7 days.
mTor kinase is involved in cell growth, proliferation, and differentiation. The roles of mTor activators, Rheb1 and Rheb2, have not been established in vivo. Here, we report that Rheb1, but not Rheb2, is critical for embryonic survival and mTORC1 signaling.
View Article and Find Full Text PDF