Publications by authors named "Maosheng Li"

Whether shellfish mariculture should be included in the blue carbon profile as a strategy to combat climate change has been controversial. It is highly demanding not only to provide calibration quantitation, but also to provide an ecosystem-based mechanism. In this study, we chose mussel farms as a case study to evaluate their contributions to carbon sinks and their responses to sedimentary carbon fixation and sequestration.

View Article and Find Full Text PDF

Nylon, a widely-used high-performance thermoplastic, boasts exceptional durability and resistance to various solvents and weak acids, making it indispensable across diverse applications. However, its nonbiodegradable nature has led to alarming environmental pollution in land and oceans. Chemical recycling to monomers (CRM) stands as a crucial strategy for establishing a circular plastic economy, but the CRM of nylon remains largely unexplored.

View Article and Find Full Text PDF

Organic materials exhibiting long-lasting emission in the near infrared are expected to have applications in bio-imaging and other areas. Although room temperature phosphorescence and thermally activated delayed fluorescence display long-lived emission of approximately one minute, organic long-persistent luminescence (OLPL) systems with a similar emission mechanism to inorganic persistent emitters can emit for several hours at room temperature. In particular OLPL with a hole-diffusion mechanism can function even in the presence of oxygen.

View Article and Find Full Text PDF

Exploiting non-covalent interactions to catalyze challenging ionic polymerizations is an ambitious goal but is in its infancy. We recently demonstrated non-covalent anion-binding catalysis as an effective methodology to enable living cationic polymerization (LCP) of vinyl ethers in an environmentally benign manner. Here, we further elucidate the structure-reactivity relationships of the elaborately designed seleno-cyclodiphosph(V)azanes catalysts and the roles of anion-binding interactions by a combined theoretical DFT study and experimental study.

View Article and Find Full Text PDF

In-situ preparation of polymer electrolytes (PEs) can enhance electrolyte/electrode interface contact and accommodate the current large-scale production line of lithium-ion batteries (LIBs). However, reactive initiators of in-situ PEs may lead to low capacity, increased impedance and poor cycling performance. Flammable and volatile monomers and plasticizers of in-situ PEs are potential safety risks for the batteries.

View Article and Find Full Text PDF

Chemically recyclable polymers that can depolymerize into their constituent monomers are attractive candidates to replace non-recyclable petroleum-derived plastics. However, the physical properties and mechanical strengths of depolymerizable polymers are commonly insufficient for practical applications. Here we demonstrate that by proper ligand design and modification, aluminum complexes can catalyse stereoretentive ring-opening polymerization of dithiolactone, yielding highly isotactic polythioesters with molar masses up to 45.

View Article and Find Full Text PDF

The chemistry of α-amino acid -carboxyanhydrides (NCAs) has a history of over 100 years, but precise and efficient ring-opening polymerization methods for NCAs remain highly needed to facilitate the studies of polypeptides─that is, mimics of natural proteins─in various disciplines. Moreover, the universally accepted NCA polymerization mechanisms are largely limited to the "amine" and the "activated monomer" mechanisms, and the anionic ring-opening polymerization of NCAs has so far not been invoked. Herein, we show an unprecedented anion-binding catalytic system combining tripodal tri-thiourea with sodium thiophenolate that enables the fast and selective anionic ring-opening polymerization of NCAs.

View Article and Find Full Text PDF

Ring-opening copolymerizations have emerged as a powerful approach towards the creation of sustainable polymers. Typical H-bonding catalysts for ring-opening are subject to a single catalytic site. Here we describe a H-bond-donor/Lewis-acidic-boron organocatalyst featuring two distinct catalytic sites in one molecule.

View Article and Find Full Text PDF

Mesoporous molecular sieve SBA-15 was successfully modified with 3-aminopropyltriethoxysilane (APTES) and 3-glycidyloxypropyltrimethoxysilane (GPTMS). The functionalized SBA-15 were characterized by small-angle X-ray (SAXRD), thermogravimetric analysis (TG), N adsorption, and Fourier transformed infrared spectrum (FT-IR). APTES functionalized SBA-15 (named SBA-15-A) and GPTMS functionalized SBA-15 (named SBA-15-G) were used to immobilize myoglobin (Mb).

View Article and Find Full Text PDF

The -demethylation of lignin monomers, which has drawn substantial attention recently, is critical for the formation of phenols from aromatic ethers. The P450BM3 peroxygenase system was recently found to enable the -demethylation of different aromatic ethers with the assistance of dual-functional small molecules (DFSM), but these prepared mutants only have either moderate -demethylation activity or moderate selectivity, which hinders their further application. In this study, we improve the system by introducing different amino acids into the active site of P450BM3, and these amino acids with different side chains impacted the catalytic ability of enzymes due to their differences in size, polarity, and hydrophobicity.

View Article and Find Full Text PDF

A series of stable mesoporous silica sieves (SBA-15) with different pore sizes (9.8, 7.2, and 5.

View Article and Find Full Text PDF

One-pot production of sequence-controlled block copolymer from mixed monomers is a crucial but rarely reached goal. Using a switchable Lewis-pair organocatalyst, we have accomplished sequence-selective polymerization from a mixture of O-carboxyanhydride (OCA) and epoxide. Polymerization of the OCA monomer occurs first and exclusively because of its exceedingly high polymerizability.

View Article and Find Full Text PDF

Absolute control over polymer stereo- and sequence structure is highly challenging in polymer chemistry. Here, an acid-orthogonal deprotection strategy is proposed for the iterative synthesis of a family of unimolecular polymers starting with enantiopure serines, featuring precise sequence, stereoconfiguration and side-chain functionalities that cannot be achieved using traditional polymerization techniques. Acid-orthogonal deprotections proceed independently of one another by the selection of protecting groups that feature the respective acid-lability.

View Article and Find Full Text PDF

This dataset includes trajectory data and video data produced by different models (including the traditional social force model, the Voronoi-based detour social force model and double-layer detour decision model) simulating the circle antipode experiment. During the simulation process, the coordinates of each pedestrian in each simulation step are recorded to form trajectory data, and each frame is recorded to form simulation video data. This data can provide an intuitive gap in the description of pedestrian detour behaviour among these pedestrian simulation models, and can be used as the comparative data when modify model to better describe pedestrian detour behaviour in the circle antipode experiment.

View Article and Find Full Text PDF

Developing chemically recyclable polymers represents a greener alternative to landfill and incineration and offers a closed-loop strategy toward a circular materials economy. However, the synthesis of chemically recyclable polymers is still plagued with certain fundamental limitations, including trade-offs between the monomer's cyclizability and polymerizability, as well as between polymer's depolymerizability and properties. Here we describe the subtle O-to-S substitution, dithiolactone monomers derived from abundant feedstock α-amino acids can demonstrate appealing chemical properties different from those of dilactone, including accelerated ring closure, augmented kinetics polymerizability, high depolymerizability and selectivity, and thus constitute a unique class of polythioester materials exhibiting controlled molecular weight (up to 100.

View Article and Find Full Text PDF

Huo-Xue-Jiang-Tang Yin (HXJTY) is a Chinese medicine formulation, which has been widely used for the treatment of various lipometabolism- and glycometabolism-related diseases in clinics. Currently, HXJTY is mainly prescribed to treat patients with type 2 diabetes mellitus (T2DM), yet its chemical and pharmacologic profiles remain to be elucidated. Here, the potential bioactive compound and action mechanism were investigated using chemical and network pharmacology analysis.

View Article and Find Full Text PDF

Aliphatic polythioesters are popular polymers because of their appealing performance such as metal coordination ability, high refractive indices, and biodegradability. One of the most powerful approaches for generating these polymers is the ring-opening polymerization (ROP) of cyclic monomers. However, the synthesis of precisely controlled polythioesters via ROP of thiolactones still faces formidable challenges, including the minimal functional diversity of available thiolactone monomers, as well as inevitable transthioesterification side reactions.

View Article and Find Full Text PDF

Engineering novel electrode materials with unique architectures has a significant impact on tuning the structural/electrochemical properties for boosting the performance of secondary battery systems. Herein, starting from well-organized WS nanorods, an ingenious design of a one-step method is proposed to prepare a bimetallic sulfide composite with a coaxial carbon coating layer, simply enabled by ZIF-8 introduction. Rich sulfur vacancies and WS /ZnS heterojunctions can be simultaneously developed, that significantly improve ionic and electronic diffusion kinetics.

View Article and Find Full Text PDF

The application of high-energy Mg/S batteries was obstructed by the insufficiency of low-cost and non-nucleophilic electrolyte. In this work, a non-nucleophilic electrolyte was prepared by facilely dissolving Mg(CFSO), MgCl, and AlCl in 1,2-dimethoxyethane (DME). The equilibrium species of the MTB electrolyte mainly comprise [Mg(μ-Cl)(DME)] and [(CFSO)AlCl], which are generated by dehalodimerization reaction and Lewis acid-base reaction, respectively.

View Article and Find Full Text PDF

Ring-opening polymerization of O-carboxyanhydrides (OCAs) can furnish polyesters with a diversity of functional groups that are traditionally hard to harvest by polymerization of lactones. Typical ring-opening catalysts are subject to unavoidable racemization of most OCA monomers, which hampers the synthesis of highly isotactic crystalline polymers. Here, we describe an effective bifunctional single-molecule organocatalysis for selective ring-opening polymerization of OCAs without epimerization.

View Article and Find Full Text PDF

A number of patients with meningiomas and psychiatric disorders will suffer psychiatric symptom recurrence following tumorectomies. The present study reported a retrospective analysis regarding 42 cases of patients with meningiomas using complete clinical follow-up data from June 2005 to June 2013. The patients were divided into the systemic antipsychotic (SP) group (n=20) following 6months of postoperative SP therapy and the none-SP (NSP) group (n=22), who did not receive postoperative antipsychotic treatment.

View Article and Find Full Text PDF

Issues related to motorcycle safety in China have not received enough research attention. As such, the causal relationship between injury outcomes of motorcycle crashes and potential risk factors remains unknown. This study intended to investigate the injury risk of motorcyclists involved in road traffic crashes in China.

View Article and Find Full Text PDF