Entry inhibitors are of particular importance in current efforts to develop a new generation of anti-influenza virus drugs. Here we report certain pentacyclic triterpenes exhibiting conserved structure features and with in vitro anti-influenza virus activity comparable to and even higher than that of oseltamivir. Mechanistic studies indicated that these lead triterpenoids bind tightly to the viral envelope hemagglutinin (HA), disrupting the interaction of HA with the sialic acid receptor and thus the attachment of viruses to host cells.
View Article and Find Full Text PDFThe development of entry inhibitors is an emerging approach to the prevention and reduction of HCV infection. Starting from echinocystic acid (EA), a μM HCV entry inhibitor, we have developed a series of bivalent oleanane-type triterpenes which, upon optimization of the length, rigidity and hydrophobicity of the linker, exert dramatically potent enhancement of inhibition with IC50 values extending into the nM level. This study establishes the importance of triterpene natural products as new leads in the development of potential HCV entry inhibitors.
View Article and Find Full Text PDFDevelopment of hepatitis C virus (HCV) entry inhibitors represents an emerging approach that satisfies a tandem mechanism for use with other inhibitors in a multifaceted cocktail. By screening Chinese herbal extracts, oleanolic acid (OA) was found to display weak potency to inhibit HCV entry with an IC50 of 10 μM. Chemical exploration of this triterpene compound revealed its pharmacophore requirement for blocking HCV entry, rings A, B, and E, are conserved while ring D is tolerant of some modifications.
View Article and Find Full Text PDFThe influenza A virus matrix 1 protein (M1) shuttles between the cytoplasm and the nucleus during the viral life cycle and plays an important role in the replication, assembly, and budding of viruses. Here, a leucine-rich nuclear export signal (NES) was identified specifically for the nuclear export of the M1 protein. The predicted NES, designated the Flu-A-M1 NES, is highly conserved among all sequences from the influenza A virus subtype, but no similar NES motifs are found in the M1 sequences of influenza B or C viruses.
View Article and Find Full Text PDFThe nuclear export of the influenza A virus ribonucleoprotein (vRNP) is crucial for virus replication. As a major component of the vRNP, nucleoprotein (NP) alone can also be shuttled out of the nucleus by interacting with chromosome region maintenance 1 (CRM1) and is therefore hypothesized to promote the nuclear export of the vRNP. In the present study, three novel nuclear export signals (NESs) of the NP--NES1, NES2, and NES3--were identified as being responsible for mediating its nuclear export.
View Article and Find Full Text PDFPorcine reproductive and respiratory syndrome virus (PRRSV) open reading frame (ORF) 2a contains a small internal ORF (2b) capable of encoding a protein of 70 or 73 amino acids (aa), termed E protein. The function and biochemical information of the E protein are currently not clear. In the present investigation, it was shown that the E protein was mainly located in the endoplasmic reticulum (ER) and Golgi complex in MARC-145 cells.
View Article and Find Full Text PDFInfluenza A virus matrix protein (M1) is the most abundant conservative protein that regulates the replication, assembly and budding of the viral particles upon infection. Several host cell factors have been determined to interact with M1 possibly in regulating influenza virus replication. By yeast two-hybrid screening, the isomerase cyclophilin A (CypA) was identified to interact with the M1 protein.
View Article and Find Full Text PDF