Two references on sparse deconvolution of high-density fluorescence microscopy images are added to [Opt. Express26(14), 18238 (2018)].
View Article and Find Full Text PDFFor more than a century, the wavelength of light was considered to be a fundamental limit on the spatial resolution of optical imaging. Particularly in light microscopy, this limit, known as Abbe's diffraction limit, places a fundamental constraint on the ability to image sub-cellular organelles with high resolution. However, modern microscopy techniques such as STED, PALM, and STORM, manage to recover sub-wavelength information, by relying on fluorescence imaging.
View Article and Find Full Text PDFThe wave-like nature of electrons has been known for almost a century, but only in recent years has the ability to shape the wavefunction of EBeams (Electron-Beams) become experimentally accessible. Various EBeam wavefunctions have been demonstrated, such as vortex, self-accelerating, Bessel EBeams etc. However, none has attempted to manipulate multi-electron beams, because the repulsion between electrons rapidly alters the beam shape.
View Article and Find Full Text PDFDeciphering the three-dimensional (3D) structure of complex molecules is of major importance, typically accomplished with X-ray crystallography. Unfortunately, many important molecules cannot be crystallized, hence their 3D structure is unknown. Ankylography presents an alternative, relying on scattering an ultrashort X-ray pulse off a single molecule before it disintegrates, measuring the far-field intensity on a two-dimensional surface, followed by computation.
View Article and Find Full Text PDF