Publications by authors named "Maor Elgarisi"

Long-term retrospective monitoring of exposure to organophosphorus nerve agents is challenging. We recently developed two highly sensitive analytical methods for regenerated sarin (GB) nerve agent in blood and its primary metabolite, isopropyl-methylphosphonic acid (IMPA), in urine. These methods were implemented in a toxicokinetics study carried out with sarin injected (i.

View Article and Find Full Text PDF
Article Synopsis
  • Highly toxic organophosphorous nerve agents (OPAs) like VX, GB, and GF have been implicated in recent conflicts and terror attacks, highlighting the need for effective detection methods.
  • A novel technique was developed for detecting alkyl methylphosphonic acid (AMPA) metabolites in urine, utilizing two solid phase extraction cartridges for improved sensitivity and selectivity in identifying nerve agent biomarkers.
  • The method demonstrated high sensitivity with limits of quantitation between 10-100 pg/mL and successful in vivo application, achieving the detection of the IMPA metabolite in rabbit urine for up to 15 days post-exposure, making it one of the most efficient methods available.
View Article and Find Full Text PDF

The highly toxic nerve agent sarin (o-isopropyl methyl-phosphonofluoridate, GB) has been used in several armed conflicts and terror attacks in recent decades. Due to its inherent high sensitivity, liquid chromatography-mass spectrometry (LC-MS/MS) has the potential to detect ultratrace levels of fluoride-regenerated G and V agents after appropriate chemical derivatization. A new method for the retrospective determination of exposure to sarin was developed.

View Article and Find Full Text PDF

The chromatograms obtained from the gas chromatography-electron ionization mass spectrometric (GC-EI-MS) analysis of extracts containing G-nerve agents in the presence of diesel, gasoline, etc., are dominated by hydrocarbon backgrounds that "mask" the G-nerve agents, leading to severe difficulties in identification. This paper presents a practical solution for this challenge by transferring the G-nerve agents from the organic phase into the aqueous phase using liquid-liquid extraction (LLE), followed by derivatization with 2-[(dimethylamino)methyl]phenol (2-DMAMP), allowing ultrasensitive LC-ESI-MS/MS analysis of the G-derivatives.

View Article and Find Full Text PDF

A highly sensitive method for the detection and identification of sarin (GB), soman (GD) and cyclosarin (GF) chemical warfare agents (CWAs) in environmental outdoor and indoor matrices such as soil, asphalt, linoleum, formica, concrete and cloth was developed. The method incorporates derivatization of the G-type nerve agent extracts with 2-[(dimethylamino)methyl]phenol (2-DMAMP), followed by LC-ESI(+)-MS/MS analysis. Four LC-amenable extraction solvents were explored in terms of their extraction efficiency and the reaction rate of the derivatizing agent.

View Article and Find Full Text PDF

A methodology for sensitive determination of sarin (GB), soman (GD) and cyclosarin (GF) chemical warfare agents in aqueous media was developed. The method incorporates direct derivatization with 2-[(dimethylamino)methyl]phenol (2-DMAMP), a commercially available, water-soluble reagent, followed by LC-ESI-MS/MS analysis in the positive ion mode. Five derivatization agents were characterized for their MS/MS fragmentation pattern, and their reaction time, temperature and derivatization-reagent amount were optimized.

View Article and Find Full Text PDF