Monolithic integration of III-V semiconductors with Si has been pursued for some time in the semiconductor industry. However, the mismatch of lattice constants and thermal expansion coefficients represents a large technological challenge for the heteroepitaxial growth. Nanowires, due to their small lateral dimension, can relieve strain and mitigate dislocation formation to allow single-crystal III-V materials to be grown on Si.
View Article and Find Full Text PDFMultijunction solar cells provide us a viable approach to achieve efficiencies higher than the Shockley-Queisser limit. Due to their unique optical, electrical, and crystallographic features, semiconductor nanowires are good candidates to achieve monolithic integration of solar cell materials that are not lattice-matched. Here, we report the first realization of nanowire-on-Si tandem cells with the observation of voltage addition of the GaAs nanowire top cell and the Si bottom cell with an open circuit voltage of 0.
View Article and Find Full Text PDFBecause of unique structural, optical, and electrical properties, solar cells based on semiconductor nanowires are a rapidly evolving scientific enterprise. Various approaches employing III-V nanowires have emerged, among which GaAs, especially, is under intense research and development. Most reported GaAs nanowire solar cells form p-n junctions in the radial direction; however, nanowires using axial junction may enable the attainment of high open circuit voltage (Voc) and integration into multijunction solar cells.
View Article and Find Full Text PDFWe report a systematic study of carrier dynamics in Al(x)Ga(1-x)As-passivated GaAs nanowires. With passivation, the minority carrier diffusion length (L(diff)) increases from 30 to 180 nm, as measured by electron beam induced current (EBIC) mapping, and the photoluminescence (PL) lifetime increases from sub-60 ps to 1.3 ns.
View Article and Find Full Text PDFVertically aligned, catalyst-free semiconducting nanowires hold great potential for photovoltaic applications, in which achieving scalable synthesis and optimized optical absorption simultaneously is critical. Here, we report combining nanosphere lithography (NSL) and selected area metal-organic chemical vapor deposition (SA-MOCVD) for the first time for scalable synthesis of vertically aligned gallium arsenide nanowire arrays, and surprisingly, we show that such nanowire arrays with patterning defects due to NSL can be as good as highly ordered nanowire arrays in terms of optical absorption and reflection. Wafer-scale patterning for nanowire synthesis was done using a polystyrene nanosphere template as a mask.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
November 2010
The control of modes coupling in photonic crystal waveguides (PCWGs) is quite important because it's the basic working mechanism of many devices in optical integrative circuits, such as filters, switches, optical add drop multiplexers (OADMs), etc. Up to now, the researches of this area mostly focus on the modes coupling between two parallel PCWGs or between PCWGs and resonance cavities. In this paper, we proposed a new way of controlling modes coupling in PCWGs by introducing asymmetry and long periodicity.
View Article and Find Full Text PDF