Betamethasone has been extensively used in medicine in recent years and poses potential hazards to aquatic organisms. This study investigated the reproductive toxic effects of betamethasone exposure in fish, employing female Japanese medaka (Oryzias latipes) as a model. Betamethasone exposure at environmentally relevant concentrations (0, 20, 200, and 2000 ng/L) for a period of 15 weeks resulted in its high accumulation in the ovary, leading to abnormal oogenesis in female Japanese medaka.
View Article and Find Full Text PDFThe broad utilization of betamethasone in medical treatments may pose a significant ecotoxicological risk to aquatic organisms, yet its potential reproductive toxicity remains unclear. The present study examined the impacts of environmental exposure on male reproduction using Japanese medaka (Oryzias latipes). After 110 days of betamethasone exposure at environmentally relevant concentrations (0, 20 and 200 ng/L), LH/FSH synthesis and release in the pituitary was inhibited, and the production of sex hormones and their signaling pathways in the gonads of male medaka were greatly influenced.
View Article and Find Full Text PDFBackground: Scatophagus argus, an estuarine inhabitant, can rapidly adapt to different salinity environments. However, the knowledge of the molecular mechanisms underlying its strong salinity tolerance remains unclear. The gill, as the main osmoregulatory organ, plays a vital role in the salinity adaptation of the fish, and thus relative studies are constructive to reveal unique osmoregulatory mechanisms in S.
View Article and Find Full Text PDFThe molecular processes of immune responses in mucosal tissues such as fish gills under environmental stress are poorly understood. In the present study, pro-inflammatory response under hyposaline stress and its regulation by cortisol/corticosteroid receptors (CRs) in gill epithelial cells of the spotted scat Scatophagus argus were analyzed. The fish were transferred to freshwater for 6 days (144 h) of acclimation.
View Article and Find Full Text PDFSalinity changes on renal osmoregulation have often been investigated while the immune response of the kidney under osmotic stress is poorly understood in teleosts. Acute stress is generally associated with enhancement of circulating cortisol. The effects of osmotic stress on renal immune response and its regulation by cortisol deserve more attention.
View Article and Find Full Text PDFBackground: To control the osmotic pressure in the body, physiological adjustments to salinity fluctuations require the fish to regulate body fluid homeostasis in relation to environmental change via osmoregulation. Previous studies related to osmoregulation were focused primarily on the gill; however, little is known about another organ involved in osmoregulation, the kidney. The salinity adaptation of marine fish involves complex physiological traits, metabolic pathways and molecular and gene networks in osmoregulatory organs.
View Article and Find Full Text PDFDopamine is an important regulator of renal natriuresis and is critical for the adaptation of many animals to changing environmental salinity. However, the molecular mechanisms through which dopamine promotes this adaptation remain poorly understood. We studied the effects of dopamine on renal hypo-osmoregulation in the euryhaline fish Scatophagus argus (S.
View Article and Find Full Text PDFThe euryhaline fish, the spotted scat (Scatophagus argus), is exceptional for its ability to tolerate rapid fluctuations in salinity. To better understand fish osmoregulation and enable more precise analyses of specific features of adaptive responses to the osmotic stress in fish, a S. argus kidney-derived cell line (SK) was developed and subcultured for more than 70 passages.
View Article and Find Full Text PDFIn the present study, we cloned the full-length cDNAs of FOXL2, Cyp19a1a and Cyp19a1b and analyzed their expression patterns during gonadal development in spotted scat, Scatophagus argus. All three genes were expressed in ovaries and testes but showed sexual dimorphism. At early stages of gonadal development, the expression of FOXL2 in ovaries was higher than testes.
View Article and Find Full Text PDFScatophagus argus, a euryhaline fish, is notable for its ability to tolerate a wide range of environmental salinities and especially for its tolerance to a rapid, marked reduction in salinity. Therefore, S. argus is a good model for studying the molecular mechanisms mediating abrupt hyperosmoregulation.
View Article and Find Full Text PDF