Traumatic brain injury (TBI) is an acquired insult to the brain caused by an external mechanical force, potentially resulting in temporary or permanent impairment. Microglia, the resident immune cells of the central nervous system, are activated in response to TBI, participating in tissue repair process. However, the underlying epigenetic mechanisms in microglia during TBI remain poorly understood.
View Article and Find Full Text PDFThe axons of retinal ganglion cells (RGCs) form the optic nerve, transmitting visual information from the eye to the brain. Damage or loss of RGCs and their axons is the leading cause of visual functional defects in traumatic injury and degenerative diseases such as glaucoma. However, there are no effective clinical treatments for nerve damage in these neurodegenerative diseases.
View Article and Find Full Text PDFObjective: Microglia, the prototypical innate immune cells of the central nervous system (CNS), are highly plastic and assume their phenotypes dependent on intrinsically genetic, epigenetic regulation or extrinsically microenvironmental cues. Microglia has been recognized as key regulators of neural stem/progenitor cells (NSPCs) and brain functions. Chromatin accessibility is implicated in immune cell development and functional regulation.
View Article and Find Full Text PDFMammalian spermatogenesis is a carefully orchestrated male germ cell differentiation process by which spermatogonia differentiate to spermatozoa in the testis. A highly organized testicular microenvironment is therefore necessary to support spermatogenesis. Regarding immunologic aspects, the testis adapts a specialized immune environment for the protection of male germ cells and testicular functions.
View Article and Find Full Text PDFThree major pathogenic states of the prostate, including benign prostatic hyperplasia, prostate cancer, and prostatitis, are related to the local inflammation. However, the mechanisms underlying the initiation of prostate inflammation remain largely unknown. Given that the innate immune responses of the tissue-specific cells to microbial infection or autoantigens contribute to local inflammation, this study focused on pattern recognition receptor (PRR)-initiated innate immune responses in mouse prostatic epithelial cells (PECs).
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
March 2021
Myocardial infarction (MI) is recognized as a major cause of death and disability around the world. Macrophage-derived extracellular vesicles (EVs) have been reportedly involved in the regulation of cellular responses to MI. Thus, we sought to clarify the mechanism by which macrophage-derived EVs regulate this process.
View Article and Find Full Text PDFThe mumps virus (MuV) causes epidemic parotitis. MuV also frequently infects the testis and induces orchitis, an important etiological factor contributing to male infertility. However, mechanisms underlying MuV infection of the testis remain unknown.
View Article and Find Full Text PDFPrevious studies have shown that lncRNA small nuclear RNA host gene 7 (lncRNA SNHG7) played an important role in cancer progression. However, the role of lncRNA SNHG7 in cardiac fibrosis is still poorly understood. In this study, the results of quantitative real time polymerase chain reaction (qRT-PCR) analysis showed that lncRNA SNHG7 was over expressed in the infarcted and peri-infarcted area in the left ventricle after MI in mice.
View Article and Find Full Text PDFEpididymitis can be caused by infectious and noninfectious etiological factors. While microbial infections are responsible for infectious epididymitis, the etiological factors contributing to noninfectious epididymitis remain to be defined. The present study demonstrated that damaged male germ cells (DMGCs) induce epididymitis in mice.
View Article and Find Full Text PDFMumps virus (MuV) has high tropism to the testis and may lead to male infertility. Sertoli cells are the major targets of MuV infection. However, the mechanisms by which MuV infection impairs male fertility and Sertoli cell function remain unclear.
View Article and Find Full Text PDFThe seminal vesicles can be infected by microorganisms, thereby resulting in vesiculitis and impairment in male fertility. Innate immune responses in seminal vesicles cells to microbial infections, which facilitate vesiculitis, have yet to be investigated. The present study aims to elucidate pattern recognition receptor-mediated innate immune responses in seminal vesicles epithelial cells.
View Article and Find Full Text PDFSystemic inflammation may impair male fertility, and its underlying mechanisms remain poorly understood. The present study investigates the effect of lipopolysaccharide (LPS)-induced systemic inflammation on the testis and epididymis in mice. Intraperitoneal injection of LPS significantly impaired testicular functions, including testosterone production, spermatogenesis, and blood-testis barrier permeability.
View Article and Find Full Text PDFThe PDF and HTML versions of the article have been updated to include the Creative Commons Attribution 4.0 International License information.
View Article and Find Full Text PDFMumps virus (MuV) infection usually results in germ cell degeneration in the testis, which is an etiological factor for male infertility. However, the mechanisms by which MuV infection damages male germ cells remain unclear. The present study showed that C-X-C motif chemokine ligand 10 (CXCL10) is produced by mouse Sertoli cells in response to MuV infection, which induces germ cell apoptosis through the activation of caspase-3.
View Article and Find Full Text PDFMumps virus (MuV) infection has high tropism to the testis and usually leads to orchitis, an etiological factor in male infertility. However, MuV replication in testicular cells and the cellular antiviral responses against MuV are not fully understood. The present study showed that MuV infected the majority of testicular cells, including Leydig cells (LC), testicular macrophages, Sertoli cells (SC), and male germ cells (GC).
View Article and Find Full Text PDFTumor necrosis factor alpha (TNFα) is an adipokine involved in the regulation of cell differentiation and lipid metabolism, but its specific role has not been clearly understood. We validated a hypothesis that loss of TNFα function would inhibit Wnt/β-catenin signaling and accelerate adipogenesis in adolescent genetic obese mice. Epididymal white adipose tissues (eWAT) from TNFα deficient (TNFα(-/-)), leptin receptor deficient (db/db) and double gene mutant (db/db/TNFα(-/-), DT) male mice were used for comparative analysis of key molecules in Wnt/β-catenin signaling and adipogenic markers by qRT-PCR and western blot techniques.
View Article and Find Full Text PDFObjective: To explore the value of dynamic arterial elastance (Eadyn) in the predication of arterial pressure response to volume loading in shock patients.
Methods: A total of 32 patients with pulse indicator continuous cardiac output (PICCO) monitoring at our intensive care unit from January 2011 to December 2012 were retrospectively studied. The decision of fluid replacement was based upon the presence of shock (mean arterial pressure (MAP) ≤ 65 mm Hg, systolic arterial pressure <90 mm Hg or a decrease of 40 mm Hg from baseline) and preserved volume responsiveness condition with a stroke volume variation (SVV) value ≥ 10%.
Although peroxisome proliferator-activated receptor alpha (PPARalpha) is highly expressed in the heart, the effects of PPARalpha on cardiac remodelling and the underlying mechanisms are unclear. The present study was undertaken to test the hypothesis that PPARalpha activator fenofibrate plays a key role in left ventricular hypertrophic remodelling via the formation of c-fos/c-jun heterodimers in spontaneous hypertensive rats (SHRs). Twenty-four male 8-week-old SHRs were randomly divided into two groups, one group treated with oral saline (n= 10) and another treated with oral fenofibrate (60 mg.
View Article and Find Full Text PDF