Short α-helical peptides stabilized by linkages between constituent amino acids offer an attractive format for ligand development. In recent years, a range of excellent ligands based on stabilized α-helices were generated by rational design using α-helical peptides of natural proteins as templates. Herein, we developed a method to engineer chemically stabilized α-helical ligands in a combinatorial fashion.
View Article and Find Full Text PDFUpregulation of β-catenin, the primary mediator of the Wnt signaling pathway, plays an important role in the tumorigenesis of several types of human cancer. Targeting β-catenin to interfere with its ability to serve as a translational co-activator is considered an attractive therapeutic approach. However, the development of inhibitors has been challenging because of the lack of obvious binding pockets for ligands, and because inhibitors should not interfere with other β-catenin functions.
View Article and Find Full Text PDFMatrix metalloproteinase-9 (MMP-9) is one of the major MMPs that can degrade extracellular matrix. Besides normal physiological functions, MMP-9 is involved in metastasis and tumor angiogenesis. Although several inhibitors of MMP-9 have been identified, in vivo regulators of MMP-9 activation are unknown.
View Article and Find Full Text PDFThe tumor suppressor gene TP53 (p53) maintains genome stability. Mutation or loss of p53 is found in most cancers. Analysis of evolutionary constrains and p53 mutations reveal important sites for concomitant functional studies.
View Article and Find Full Text PDFProtein disulfide isomerase (PDI) is a multifunctional protein of the thioredoxin superfamily. PDI mediates proper protein folding by oxidation or isomerization and disrupts disulfide bonds by reduction; it also has chaperone and antichaperone activities. Although PDI localizes primarily to the endoplasmic reticulum (ER), it is secreted and expressed on the cell surface.
View Article and Find Full Text PDFProtein disulfide isomerase (PDI) is a promiscuous protein with multifunctional properties. PDI mediates proper protein folding by oxidation or isomerization and disrupts disulfide bonds by reduction. The entry of HIV-1 into cells is facilitated by the PDI-catalyzed reductive cleavage of disulfide bonds in gp120.
View Article and Find Full Text PDF