Rice tillering is one of the most important agronomical traits largely determining grain yield. Photosynthesis and nitrogen availability are two important factors affecting rice tiller bud elongation; however, underlying mechanism and their cross-talk is poorly understood. Here, we used map-based cloning, transcriptome profiling, phenotypic analysis, and molecular genetics to understand the roles of the Decreased Tiller Number 1 (DTN1) gene that encodes the fructose-1,6-bisphosphate aldolase and involves in photosynthesis required for light-induced axillary bud elongation in rice.
View Article and Find Full Text PDFBackground: Chalkiness is a common phenotype induced by various reasons, such as abiotic stress or the imbalance of starch synthesis and metabolism during the development period. However, the reason mainly for one gene losing its function such as NAC (TFs has a large family in rice) which may cause premature is rarely known to us.
Results: The Ko-Osnac02 mutant demonstrated an obviously early maturation stage compared to the wild type (WT) with 15 days earlier.
Head rice yield (HRY) measures rice milling quality and determines final grain yield and commercial value. Here, we report that two major quantitative trait loci for milling quality in rice, qMq-1 and qMq-2, represent allelic variants of Waxy/Waxy (hereafter Wx) encoding Granule-Bound Starch Synthase I (GBSSI) and Alkali Spreading Value ALK/ALK encoding Soluble Starch Synthase IIa (SSIIa), respectively. Complementation and overexpression transgenic lines in indica and japonica backgrounds confirmed that Wx and ALK coordinately regulate HRY by affecting amylose content, the number of amylopectin branches, amyloplast size, and thus grain filling and hardness.
View Article and Find Full Text PDFThe exocyst is a key factor in vesicle transport and is involved in cell secretion, cell growth, cell division and other cytological processes in eukaryotes. EXO70 is the key exocyst subunit. We obtained a gene, SHORT-ROOT 1 (SR1), through map-based cloning and genetic complementation.
View Article and Find Full Text PDFCalcium-dependent protein kinases are involved in various biological processes, including hormone response, growth and development, abiotic stress response, disease resistance, and nitrogen metabolism. We identified a novel mutant of a calcium-dependent protein-kinase-encoding gene, esl4, by performing map cloning. The esl4 mutant was nitrogen deficient, and expression and enzyme activities of genes related to nitrogen metabolism were down-regulated.
View Article and Find Full Text PDF