Existing works mainly focus on crowd and ignore the confusion regions which contain extremely similar appearance to crowd in the background, while crowd counting needs to face these two sides at the same time. To address this issue, we propose a novel end-to-end trainable confusion region discriminating and erasing network called CDENet. Specifically, CDENet is composed of two modules of confusion region mining module (CRM) and guided erasing module (GEM).
View Article and Find Full Text PDFIEEE Trans Cybern
February 2013
Gait analysis provides a feasible approach for identification in intelligent video surveillance. However, the effectiveness of the dominant silhouette-based approaches is overly dependent upon background subtraction. In this paper, we propose a novel incremental framework based on optical flow, including dynamics learning, pattern retrieval, and recognition.
View Article and Find Full Text PDFIEEE Trans Syst Man Cybern B Cybern
October 2011
This paper proposes a supervised modeling approach for gait-based gender classification. Different from traditional temporal modeling methods, male and female gait traits are competitively learned by the addition of gender labels. Shape appearance and temporal dynamics of both genders are integrated into a sequential model called mixed conditional random field (CRF) (MCRF), which provides an open framework applicable to various spatiotemporal features.
View Article and Find Full Text PDF