Traditional polymer solid electrolytes (PSEs) suffer from low ions conductivity, poor kinetics and safety concerns. Here, we present a novel porous MOF glass gelled polymer electrolyte (PMG-GPE) prepared via a top-down strategy, which features a unique three-dimensional interconnected graded-aperture structure for efficient ions transport. Comprehensive analyses, including time-of-flight secondary ion mass spectrometry (TOF-SIMS), Solid-state Li magic-angle-spinning nuclear magnetic resonance (MAS NMR), Molecular Dynamics (MD) simulations, and electrochemical tests, quantify the pore structures, revealing their relationship with ions conductivity that increases and then decreases as macropore proportion rises.
View Article and Find Full Text PDFCompared to Pt/C, the atomic ordered Pt-based intermetallic compounds can deliver higher efficiency and reliable stability, and they are considered one of the ideal cathode catalysts for the next generation of fuel cells. This work proposed a simple ferrocene atmosphere annealing method to improve commercial Pt/C and convert Pt to L1-PtFe. After further acid etching treatment, the obtained carbon-supported Pt-skin L1-PtFe (Pt-skin L1-PtFe/C) with superfine particle size (∼3.
View Article and Find Full Text PDFMn-rich P2-type layered oxide cathode materials suffer from severe capacity loss caused by detrimental phase transition and transition metal dissolution, making their implementation difficult in large-scale sodium-ion battery applications. Herein, we introduced a high-valent Sb substitution, leading to a biphasic P2/O3 cathode that suppresses the P2-O2 phase transformation in the high-voltage condition attributed to the stronger Sb-O covalency that introduces extra electrons to the O atom, reducing oxygen loss from the lattices and improving structural stability, as confirmed by first-principle calculations. Besides, the enhanced Na diffusion kinetics and thermodynamics in the modified sample are associated with the enlarged lattice parameters.
View Article and Find Full Text PDFTough issues like sodium (Na) dendrite growth and poor anode reversibility hinder the practical application of sodium metal batteries (SMBs) with moderate liquid electrolytes. To settle these problems, using a smart self-adapting AlSiO ceramic fiber (CF) membrane is demonstrated to enable homogeneous Na depositions and inhibit the dendritic growth. This inorganic membrane itself has superb thermal stability, high ionic mobility (Na transference number: 0.
View Article and Find Full Text PDFElectrolytic aqueous zinc-manganese (Zn-Mn) batteries have the advantage of high discharge voltage and high capacity due to two-electron reactions. However, the pitfall of electrolytic Zn-Mn batteries is the sluggish deposition reaction kinetics of manganese oxide during the charge process and short cycle life. We show that, incorporating ZnO electrolyte additive can form a neutral and highly viscous gel-like electrolyte and render a new form of electrolytic Zn-Mn batteries with significantly improved charging capabilities.
View Article and Find Full Text PDFAir-oxidation is an effective strategy to obtain promising carbon materials from asphalt for sodium-ion batteries. However, this method would generate a vast amount of gaseous pollutant, which pose challenges for recycling. Herein, a simple, cost-effective and environmentally friendly liquid-phase oxidation method is proposed.
View Article and Find Full Text PDFOwing to the extremely limited structural deformation caused by the introduction of guest ions that their rigid structure can sustain, crystalline materials typically fail owing to structural collapse when utilized as electrode materials. Amorphous materials, conversely, are more resistant to volume expansion during dynamic ion transport and can introduce a lot of defects as active sites. Here, The amorphous polyaniline-coated/intercalated VO·nHO (PVOH) nanowires are prepared by in situ chemical oxidation combined with self-assembly strategy, which exhibited impressive electrochemical properties because of its short-range ordered crystal structure, oxygen vacancy/defect-rich, improved electronic channels, and ionic channels.
View Article and Find Full Text PDFDue to their unique advantages, single atoms and clusters of transition metals are expected to achieve a breakthrough in catalytic activity, but large-scale production of active materials remains a challenge. In this work, a simple solvent-free one-step annealing method is developed and applied to construct diatomic and cluster active sites in activated carbon by utilizing the strong anchoring ability of phenanthroline to metal ions, which can be scaled for mass productions. Benefiting from the synergy between the different metals, the obtained sub-nano-bimetallic atom-cluster catalysts (FeNi -NC) exhibit high oxygen reduction reactions (ORR) activity (E = 0.
View Article and Find Full Text PDFZinc anode-based aqueous batteries have attracted considerable interest for large-scale energy storage and wearable devices. Unfortunately, the formation of Zn dendrite, parasitic hydrogen evolution reaction (HER), and irreversible by-products, seriously restrict their practical applications. Herein, a series of compact and uniform metal-organic frameworks (MOFs) films with precisely controlled thickness (150-600 nm) are constructed by a pre-oxide gas deposition (POGD) method on Zn foil.
View Article and Find Full Text PDFFor Li-Se batteries, cathode using carbonaceous hosts to accommodate Se performed modestly, whereas those applying metallic compounds with stronger chemical adsorption exhibited even more rapid capacity decay, the intrinsic reasons for which are still not clear. Herein, it is found that Se tends to precipitate on the surface of the electrode during cycling, and the precipitation speed depends on the polarization degree of the host. A further enhanced adsorption does not certainly generate better electrochemical activity, since hosts with overhigh adsorption ability are hard to desorb polyselenides, leading to catalyst passivation and rapid capacity decay.
View Article and Find Full Text PDFHydrogen production from water electrolysis is severely restricted by the poor reaction kinetics of oxygen evolution reaction (OER). In this work, a series of two-dimensional (2D) composites MOF/TiCT (the MXene phase) were fabricated by electrostatically directed assembly and used as catalysts for OER. The obtained composite materials exhibit enhanced electrocatalytic properties, thanks to the ultrathin 2D/2D heterostructure with abundant active sites in Co2Ni-MOF and the high electronic conductivity of TiCT.
View Article and Find Full Text PDFRational design and synthesis of multifunctional electrocatalysts with high electrochemical activity and low cost are significantly important for new-generation lithium-sulfur (Li-S) batteries. Herein, N-doped FeP nanospheres decorated N doped carbon matrix is successfully synthesized by facile one-pot pyrolysis and in-situ phosphorization technique to mitigate the conversion kinetics and suppress the shuttle effect. The large specific surface area with mesopores can incorporate up to 81.
View Article and Find Full Text PDFDisordered carbons as the most promising anode materials for sodium ion batteries (SIBs) have attracted much attention, due to the widely-distributed sources and potentially high output voltage when applied in full cells owing to the almost lowest voltage plateau. The complex microstructure makes the sodium storage mechanism of disordered carbons controversial. Recently, many studies show that the plateau region of disordered carbons are closely related to the embedment of sodium ion/semimetal in nanopores.
View Article and Find Full Text PDFSelenium (Se) is an appealing alternative cathode material for secondary battery systems that recently attracted research interests in the electrochemical energy storage field due to its high theoretical specific capacity and good electronic conductivity. However, despite the relevant capacity contents reported in the literature, Se-based cathodes generally show poor rate capability behavior. To circumvent this issue, we propose a series of selenium@carbon (Se@C) composite positive electrode active materials capable of delivering a four-electron redox reaction when placed in contact with an aqueous copper-ion electrolyte solution (i.
View Article and Find Full Text PDFRechargeable aqueous Zn-Mn batteries have garnered extensive attention for next-generation high-safety energy storage. However, the charge-storage chemistry of Zn-Mn batteries remains controversial. Prevailing mechanisms include conversion reaction and cation (de)intercalation in mild acid or neutral electrolytes, and a MnO /Mn dissolution-deposition reaction in strong acidic electrolytes.
View Article and Find Full Text PDFAt present, rechargeable aqueous zinc ion batteries (RZIBs) have become a rising star and highly sought after in the field of new energy. While vanadium-based RZIBs often exhibit an anomaly of increased long-cycle capacity, which has not been explored in depth. Nevertheless, it is critical to understand this phenomenon to develop high-performance RZIBs.
View Article and Find Full Text PDFWe choose copper(II) ions to salinize maleic acid, then form a layered copper maleate hydrate and apply this as an anode material for LIBs for the first time. The as-prepared material exhibits admirable electrochemical performance (404.6 mA h g at 0.
View Article and Find Full Text PDFDesigning sulfur host materials with unique functions such as physical constraint or chemical catalysis to suppress the shuttle effect and promote the fast conversion of polysulfides is a prerequisite for lithium-sulfur batteries (LSBs). Herein, we construct hollow Co(OH) nanotubes connected by TiCT nanosheets (denoted as Co(OH)@TiCT) as host materials for sulfur through a simple self-assembly method at room temperature. The large void spaces of Co(OH) nanotubes not only confine higher sulfur loading but also mitigate the volumetric expansion in the process of lithiation.
View Article and Find Full Text PDFJ Colloid Interface Sci
February 2022
Selenium sulfide as a new alternative cathode material can effectively address the inferior electronic conductivity of sulfur, which is the main cause for poor electrochemical reactivity of conventional lithium-sulfur batteries (Li-S batteries). Therefore, in this work, hollow carbon spheres loaded with NiSe nanoplates were prepared as SeS hosts for Li-SeS batteries. The unique micro-mesoporous hollow carbon spheres not only provide channels for the diffusion of SeS, but also afford spaces for alleviating the volume expansion of the active substance.
View Article and Find Full Text PDFCobalt phosphides electrocatalysts have great potential for water splitting, but the unclear active sides hinder the further development of cobalt phosphides. Wherein, three different cobalt phosphides with the same hollow structure morphology (CoP-HS, CoP -HS, CoP -HS) based on the same sacrificial template of ZIF-67 are prepared. Surprisingly, these cobalt phosphides exhibit similar OER performances but quite different HER performances.
View Article and Find Full Text PDFThe practical application of room-temperature Na-S batteries is hindered by the low sulfur utilization, inadequate rate capability and poor cycling performance. To circumvent these issues, here, we propose an electrocatalyst composite material comprising of N-doped nanocarbon and FeN. The multilayered porous network of the carbon accommodates large amounts of sulfur, decreases the detrimental effect of volume expansion, and stabilizes the electrodes structure during cycling.
View Article and Find Full Text PDFIn this work, nanoflower-like NaVOPO·2HO with a large interlayer distance of 6.5295 Å is synthesized a simple chemical precipitation method at room temperature. It is the first time that the potential of the NaVOPO·2HO electrode as a cathode material for SIBs has been investigated, and it exhibits a high specific capacity (127 mA h g at 0.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2021
Metal-organic framework (MOF) films can be made by cathodic electrodeposition, where a Brønsted base is formed electrochemically which deprotonates the MOF linkers that are present in solution as undissociated/partially dissociated weak acids. However, the co-deposition of metal and the narrow range of possible metal nodes limit the scope of this method. In this work, we propose the use of hydrogen peroxide (hydrogen peroxide assisted cathodic deposition or HPACD), to overcome these limitations.
View Article and Find Full Text PDF