Publications by authors named "MaoQiang Xie"

Background: Mining functional gene modules from genomic data is an important step to detect gene members of pathways or other relations such as protein-protein interactions. This work explores the plausibility of detecting functional gene modules by factorizing gene-phenotype association matrix from the phenotype ontology data rather than the conventionally used gene expression data. Recently, the hierarchical structure of phenotype ontologies has not been sufficiently utilized in gene clustering while functionally related genes are consistently associated with phenotypes on the same path in phenotype ontologies.

View Article and Find Full Text PDF

An optimized remote material detection scheme based on the laser filament-induced plasma spectroscopy and light detection and ranging (FIPS-LIDAR) is proposed in this work. The elemental composition and concentration of aerosol are measured by FIPS-LIDAR. By focusing the femtosecond laser with a large aperture (Φ41 cm) concave mirror and coaxial fluorescence collection scheme, the remote detection of aerosol in air at μg/m level has been realized at a distance of 30 m.

View Article and Find Full Text PDF

Accurate segmentation of the prostate has many applications in the detection, diagnosis and treatment of prostate cancer. Automatic segmentation can be a challenging task because of the inhomogeneous intensity distributions on MR images. In this paper, we propose an automatic segmentation method for the prostate on MR images based on anatomy.

View Article and Find Full Text PDF

Gene-phenotype association prediction can be applied to reveal the inherited basis of human diseases and facilitate drug development. Gene-phenotype associations are related to complex biological processes and influenced by various factors, such as relationship between phenotypes and that among genes. While due to sparseness of curated gene-phenotype associations and lack of integrated analysis of the joint effect of multiple factors, existing applications are limited to prediction accuracy and potential gene-phenotype association detection.

View Article and Find Full Text PDF

Background: Prioritizing disease genes is trying to identify potential disease causing genes for a given phenotype, which can be applied to reveal the inherited basis of human diseases and facilitate drug development. Our motivation is inspired by label propagation algorithm and the false positive protein-protein interactions that exist in the dataset. To the best of our knowledge, the false positive protein-protein interactions have not been considered before in disease gene prioritization.

View Article and Find Full Text PDF

Discovering gene-phenotype associations is significant to understand the disease mechanisms. Nonnegative matrix factorization (NMF) has been widely used in computational biology for its good performance and interpretability. In this paper, we proposed a novel metrical consistency NMF (MCNMF) method for candidate gene prioritization.

View Article and Find Full Text PDF

Motivation: The availability of ontologies and systematic documentations of phenotypes and their genetic associations has enabled large-scale network-based global analyses of the association between the complete collection of phenotypes (phenome) and genes. To provide a fundamental understanding of how the network information is relevant to phenotype-gene associations, we analyze the circular bigraphs (CBGs) in OMIM human disease phenotype-gene association network and MGI mouse phentoype-gene association network, and introduce a bi-random walk (BiRW) algorithm to capture the CBG patterns in the networks for unveiling human and mouse phenome-genome association. BiRW performs separate random walk simultaneously on gene interaction network and phenotype similarity network to explore gene paths and phenotype paths in CBGs of different sizes to summarize their associations as predictions.

View Article and Find Full Text PDF

Understanding the categorization of human diseases is critical for reliably identifying disease causal genes. Recently, genome-wide studies of abnormal chromosomal locations related to diseases have mapped >2000 phenotype-gene relations, which provide valuable information for classifying diseases and identifying candidate genes as drug targets. In this article, a regularized non-negative matrix tri-factorization (R-NMTF) algorithm is introduced to co-cluster phenotypes and genes, and simultaneously detect associations between the detected phenotype clusters and gene clusters.

View Article and Find Full Text PDF

Motivation: To validate the candidate disease genes identified from high-throughput genomic studies, a necessary step is to elucidate the associations between the set of candidate genes and disease phenotypes. The conventional gene set enrichment analysis often fails to reveal associations between disease phenotypes and the gene sets with a short list of poorly annotated genes, because the existing annotations of disease-causative genes are incomplete. This article introduces a network-based computational approach called rcNet to discover the associations between gene sets and disease phenotypes.

View Article and Find Full Text PDF