Chronic obstructive pulmonary disease (COPD) is an irreversible and progressive chronic inflammatory lung disease which affects millions of people worldwide. Activated fibroblasts are observed to accumulate in lung of COPD patients and promote COPD progression through aberrant extracellular matrix (ECM) deposition. In this study, we identified that miR-1307-5p expression was significantly increased in lung fibroblasts derived from COPD patients.
View Article and Find Full Text PDFHyperactivation of ribosome biosynthesis (RiBi) is a hallmark of cancer, and targeting ribosome biogenesis has emerged as a potential therapeutic strategy. The depletion of , a major component of selectivity factor 1 (), disrupts the pre-initiation complex, preventing RNA polymerase I from binding ribosomal DNA and inhibiting the hyperactivation of RiBi. Here, we investigate the role of , in regulating RiBi and proliferation in stomach adenocarcinoma (STAD).
View Article and Find Full Text PDFBackground: TAF1B (TATA Box Binding Protein (TBP)-Associated Factor) is an RNA polymerase regulating rDNA activity, stress response, and cell cycle. However, the function of TAF1B in the progression of hepatocellular carcinoma (HCC) is unknown.
Objective: In this study, we intended to characterize the crucial role and molecular mechanisms of TAF1B in modulating nucleolar stress in HCC.
Inherited noncoding genetic variants confer significant disease susceptibility to childhood acute lymphoblastic leukemia (ALL) but the molecular processes linking germline polymorphisms with somatic lesions in this cancer are poorly understood. Through targeted sequencing in 5,008 patients, we identified a key regulatory germline variant in GATA3 associated with Philadelphia chromosome-like ALL (Ph-like ALL). Using CRISPR-Cas9 editing and samples from patients with Ph-like ALL, we showed that this variant activated a strong enhancer that upregulated GATA3 transcription.
View Article and Find Full Text PDFBackground: Acute lymphoblastic leukemia (ALL) is the most common malignancy in children, while relapse and refractory ALL remains a leading cause of death in children. However, paired ALL samples of initial diagnosis and relapse subjected to next-generation sequencing (NGS) could construct clonal lineage changes, and help to explore the key issues in the evolutionary process of tumor clones. Therefore, we aim to analyze gene alterations during the initial diagnosis and relapse of ALL patients and to explore the underlying mechanism.
View Article and Find Full Text PDFMost B cell precursor acute lymphoblastic leukemia (BCP ALL) can be classified into known major genetic subtypes, while a substantial proportion of BCP ALL remains poorly characterized in relation to its underlying genomic abnormalities. We therefore initiated a large-scale international study to reanalyze and delineate the transcriptome landscape of 1,223 BCP ALL cases using RNA sequencing. Fourteen BCP ALL gene expression subgroups (G1 to G14) were identified.
View Article and Find Full Text PDF