Publications by authors named "Mao-Xiang Jing"

Solid electrolytes with both interface compatibility and efficient ion transport have been an urgent technical requirement for the practical application of solid-state lithium batteries. Herein, a multifuctional poly(1,3-dioxolane) (PDOL) electrolyte combining the gradient structure from the solid state to the gel state with the LiLaZrTaO (LLZTO) interfacial modification layer was designed, in which the "solid-to-gel" gradient structure greatly improved the electrode/electrolyte interface compatibility and ion transport, while the solid PDOL and LLZTO layers effectively improved the interface stability of the electrolyte/lithium anode and the inhibition of the lithium dendrites via their high mechanical strength and forming a stable interfacial SEI composite film. This gradient PDOL/LLZTO composite electrolyte possesses a high ionic conductivity of 2.

View Article and Find Full Text PDF

High interface impedance, slow ion transmission, and easy growth of lithium dendrites in solid-state lithium battery are main obstacles to its development and application. Good interface combination and compatibility between electrolyte and electrodes is an important way to solve these problems. In this work, we successfully combined a high ionic conductive polymerized 1,3-dioxolane (PDOL) solid-state electrolyte and a PDOL gel-state electrolyte to form a rigid-flexible composite structural electrolyte and realized the gelation modification of solid electrolyte/electrode interface.

View Article and Find Full Text PDF

Poor room-temperature ionic conductivity and lithium dendrite formation are the main issues of solid electrolytes. In this work, rod-shaped alumina incorporation and graphite coating were simultaneously applied to poly (propylene carbonate) (PPC)-based polymer solid electrolytes (Wang et al., 2018).

View Article and Find Full Text PDF

Poor interface stability is a crucial problem hindering the electrochemical performance of solid-state lithium batteries. In this work, a novel approach for interface stability was proposed to integrate the cathode/solid electrolyte by forming an electrolyte buffer layer on the rough surface of the cathode and coating a layer of graphite on the side of the electrolyte facing the lithium anode. This hybrid structure significantly improves the integration and the interface stability of the electrode/electrolyte.

View Article and Find Full Text PDF

Electrodes with high conductivity and flexibility are crucial to the development of flexible lithium-ion batteries. In this study, three-dimensional (3D) LiFePO and LiTiO fiber membrane materials were prepared through electrospinning and directly used as self-standing electrodes for lithium-ion batteries. The structure and morphology of the fibers, and the electrochemical performance of the electrodes and the full battery were characterized.

View Article and Find Full Text PDF

Treatment of high concentration organic wastewater has always been a difficult problem in the field of water purification due to its high cost, low efficiency, long processing cycle and possible second pollution. An overlapped nano-Fe₂O₃/TiO₂@activated carbon fiber membrane composite was successfully prepared by hydrothermal loading method. Nano-rod-like TiO₂ and columnar Fe₂O₃ polyhedrals overlapped and formed a composite coating on the surface of activated carbon fiber membrane.

View Article and Find Full Text PDF

A LiFePO4/C composite fiber membrane was fabricated by the electrospinning method and subsequent thermal treatment. The thermal decomposition process was analyzed by TG/DSC, the morphology, microstructure and composition were studied using SEM, TEM, XRD, Raman, respectively. The results indicated that the prepared LiFePO4/C composite fibers were composed of nanosized LiFePO4 crystals and amorphous carbon coatings, which formed a three dimensional (3D) long-range networks, greatly enhanced the electronic conductivity of LiFePO4 electrode up to 3.

View Article and Find Full Text PDF

Improving the specific capacity and electronic conductivity of TiO can boost its practical application as a promising anode material for lithium ion batteries. In this work, a three-dimensional networking oxygen-deficient nano TiO/carbon fibre membrane was achieved by combining the electrospinning process with a hot-press sintering method and directly used as a self-standing anode. With the synergistic effects of three-dimensional conductive networks, surface oxygen deficiency, high specific surface area and high porosity, binder-free and self-standing structure, etc.

View Article and Find Full Text PDF

The double-sided transparent conductive films of AgNWs/PVC/AgNWs using the silver nanowires and PVC substrate were fabricated by the dip-coating process followed by mechanical press treatment. The morphological and structural characteristics were investigated by scanning electron microscope (SEM) and atomic force microscope (AFM), the photoelectric properties and mechanical stability were measured by ultraviolet-visible spectroscopy (UV-vis) spectrophotometer, four-point probe technique, 3M sticky tape test, and cyclic bending test. The results indicate that the structure and photoelectric performances of the AgNWs films were mainly affected by the dipping and lifting speeds.

View Article and Find Full Text PDF

Core-shell nano-TiO2@a-Al2O3 microspheres of 5-20 μm were prepared by the heterogeneous precipitation method combined with the hydro-thermal and calcination process using α-Al2O3 microspheres as substrate. Their morphologies, microstructure and crystalline phase were characterized by SEM and XRD respectively. The photocatalytic activity was evaluated by degradation of methyl orange.

View Article and Find Full Text PDF

To obtain low sheet resistance, high optical transmittance, small open spaces in conductive networks, and enhanced adhesion of flexible transparent conductive films, a carbon nanotube (CNT)/silver nanowire (AgNW)-PET hybrid film was fabricated by mechanical pressing-transfer process at room temperature. The morphology and structure were characterized by scanning electron microscope (SEM) and atomic force microscope (AFM), the optical transmittance and sheet resistance were tested by ultraviolet-visible spectroscopy (UV-vis) spectrophotometer and four-point probe technique, and the adhesion was also measured by 3M sticky tape. The results indicate that in this hybrid nanostructure, AgNWs form the main conductive networks and CNTs as assistant conductive networks are filled in the open spaces of AgNWs networks.

View Article and Find Full Text PDF

The core-shell nano-TiO2/Al2O3/NiFe2O4 microparticles of 5-8 microm were prepared by the heterogeneous precipitation followed by calcination treatment. The morphologies, structure, crystalline phase, and magnetic property were characterized by optical biomicroscopy (OBM), scanning electron microscopy (SEM), X-ray diffractometry (XRD) and vibrating sample magnetometer (VSM) respectively. The photocatalytic activity was evaluated by degrading methyl orange solution either under UV light and sunlight.

View Article and Find Full Text PDF