Publications by authors named "Mao-Sen Sun"

Mutations in the key enzyme of sialic acid biosynthesis, uridine diphospho-N-acetylglucosamine 2-epimerase/N-acetylmannosamine (ManNAc) kinase (GNE/MNK), result in hereditary inclusion body myopathy (HIBM), an adult-onset, progressive neuromuscular disorder. We created knockin mice harboring the M712T Gne/Mnk mutation. Homozygous mutant (Gne(M712T/M712T)) mice did not survive beyond P3.

View Article and Find Full Text PDF

Deficiency of glucose-6-phosphatase (G6Pase), a key enzyme in glucose homeostasis, causes glycogen storage disease type Ia (GSD-Ia), an autosomal recessive disorder characterized by growth retardation, hypoglycemia, hepatomegaly, nephromegaly, hyperlipidemia, hyperuricemia, and lactic acidemia. G6Pase is an endoplasmic reticulum-associated transmembrane protein expressed primarily in the liver and the kidney. Therefore, enzyme replacement therapy is not feasible using current strategies, but somatic gene therapy, targeting G6Pase to the liver and the kidney, is an attractive possibility.

View Article and Find Full Text PDF

Glucose-6-phosphatase (G6Pase), a key enzyme in glucose homeostasis, is anchored to the endoplasmic reticulum by nine transmembrane helices. The amino acids comprising the catalytic center of G6Pase include Lys(76), Arg(83), His(119), Arg(170), and His(176). During catalysis, a His residue in G6Pase becomes phosphorylated generating an enzyme-phosphate intermediate.

View Article and Find Full Text PDF

Hereditary tyrosinemia type 1 (HT1) (McKusick 276700), a severe autosomal recessive disorder of tyrosine metabolism, is caused by mutations in the fumarylacetoacetate hydrolase gene Fah (EC 3.7.1.

View Article and Find Full Text PDF