The extraction methods for antimicrobial peptides (AMPs) from plants are varied, but the absence of a standardized and rapid technique remains a challenge. In this study, a functionalized biochar was developed and characterized for the extraction of AMPs from pea protein hydrolysates. The results indicated that the biochar mainly enriched AMPs through electrostatic interaction, hydrogen bonding and pore filling.
View Article and Find Full Text PDFIn this study, rice husk biochar was engineered with abundant iron ion sites to enhance the enrichment of antioxidant peptides from rice protein hydrolysates through metal-chelating interactions. The π-π interactions and metal ion chelation were identified as the primary mechanisms for the enrichment process. Through peptide sequencing, four peptides were identified: LKFL (P1: Leu-Lys-Phe-Leu), QLLF (P2: Gln-Leu-Leu-Phe), WLAYG (P3: Trp-Leu-Ala-Tyr-Gly), and HFCGG (P4: His-Phe-Cys-Gly-Gly).
View Article and Find Full Text PDFPea peptides can lead to degradation through oxidation, deamidation, hydrolysis, or cyclization during production, processing, and storage, which in turn limit their broader application. To stabilize pea peptides, this study employed spray drying technology to create a pea peptide micro-encapsule using maltodextrin, gum tragacanth, and pea peptides. Four key factors, including polysaccharide ratio, glycopeptide ratio, solid-liquid ratio, and inlet temperature, were optimized to enhance the antioxidant properties of the pea peptide micro-encapsule.
View Article and Find Full Text PDFThe relationship between the structure of peptides LR5 (LHKFR) and YR6 (YGLYPR) and their antioxidant and anti-inflammatory activity remains unclear. Herein, leucine, tyrosine, proline, and phenylalanine at different positions in the peptides were replaced by Alanine (Ala), and two new pentapeptides (AR5 and LAR5) and four hexapeptides (AGR6, YAR6, YLR6, and YGR6) were obtained. The effect of Ala replacement on the hydrophobicity, cytotoxicity, NO inhibition rate, and active oxygen radical scavenging ability of these peptides and their antioxidant and anti-inflammatory abilities were investigated.
View Article and Find Full Text PDFFor environmental safety, it is important to establish a simple, rapid, and sensitive method for emerging pollutants. Here, a dispersive solid-phase extraction (d-SPE) method based on an iron-based metal-organic framework (Fe-MIL-88-NH) combined with high-performance liquid chromatography (HPLC) was developed for tetrabromobisphenol A (TBBPA) in water samples. Fe-MIL-88-NH was synthesized using a solvothermal method and completely characterized.
View Article and Find Full Text PDFMethylene blue (MB) is a very widely used cationic dye for color cotton and silk products. The harmful MB has a complex aromatic structure that is difficult to be degraded in natural aqueous. In this study for the first time, a novel double Z-type ternary composite long-afterglow/graphitic carbon nitride@metal-organic framework (SrAlO:Eu,Dy/g-CN@NH-UiO-66, SGN) has been synthesized by solvothermal method, and was used as a new photocatalyst for removal of MB.
View Article and Find Full Text PDFThe frequent exposure of the widely used dye, basic fuchsin (BF), is seriously threatening the health of human central nervous system. Thus, removing the environmental pollution caused by BF is crucial, and photocatalytic technology recently has been used to degrade the pollutions dye. In this study, the binary composite SrAlO:Eu, Dy/g-CN was prepared by high-temperature calcination and then applied in BF photodegradation.
View Article and Find Full Text PDFFood Addit Contam Part A Chem Anal Control Expo Risk Assess
July 2022
In this paper, a new hollow fiber liquid-phase microextraction method was developed to improve the extraction of five fluorescent whitening agents that migrated from plastics food contact materials. Influencing factors, such as the types of membrane, the extraction solvent, the stirring speed, the addition of salt ion, and extraction time, were investigated in detail. Under the optimal conditions, high enrichment factors (71-205) can be obtained with 15 μL extraction solvent.
View Article and Find Full Text PDFInflammation is a contributing factor to the initiation and progression of many diseases, and some food-derived biofunctional peptides show high anti-inflammatory activity. In our previous study, we demonstrated that peptides derived from trypsin hydrolysis of rice protein show good immunological activity. In the present study, proteins of broken rice were extracted and identified by macroporous resin fractionation and liquid chromatography/tandem mass spectrometry (LC-MS/MS).
View Article and Find Full Text PDFA FeO/mesoporous graphitized carbon (FeO/m-GC) composite was prepared through a facile calcination method with iron-based metal-organic frameworks (Fe-MOFs) as a sacrificial template. After carbonization, the FeO nanoparticles were uniformly dispersed in the mesoporous carbon support, resulting in spatial structural stability. The mesoporous carbon support obtained was highly graphitized and exhibited eminent electrical conductivity, which accelerated the electron transfer between the FeO nanoparticles by Fe(II)/Fe(III) redox cycles and m-GC by C = C/C-C redox cycles, leading to the excellent peroxidase-mimetic activity of FeO/m-GC.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
March 2022
Imidacloprid as a widely used neonicotinoid insecticide can cause harmful pesticide residue inevitably. Metal-organic frameworks (MOFs) were innovatively composited to improve the light absorption and degradation performance of BiWO semiconductor, which expanded the photodegradation application in solving environmental problems. Based on the synergistic effect of BiWO and NH-MIL-88B(Fe), a BiWO/NH-MIL-88B(Fe) (BNM) heterojunction photocatalyst with high-performance of photocatalytic degradation activities was successfully synthesized.
View Article and Find Full Text PDFThe new food-derived bio-functional peptides are urgently needed globally, but the separation and purification process for obtaining the immunopeptides from food is low efficiency and highly time-consuming. In the present study, rice proteins were extracted and identified by using liquid chromatography/tandem mass spectrometry (LC-MS/MS). Furthermore, a strategy combining immuno-prediction and in silico simulation was used to screen for peptides showing immunomodulatory activity, including inhibition of the release of nitric oxide, tumor necrosis factor-α, and the interleukins IL-6 and IL-1β in lipopolysaccharide-induced RAW264.
View Article and Find Full Text PDFTo resolve the occurrence of unfulfillable detection in high-salts foods, we used fluorescence resonant energy transfer (FRET) sensors based on nanoparticle upconversion. In this study, we developed a novel FRET sensor for the detection of bisphenol A (BPA) in high-salt foods. We based this approach on the assembly of aptamer modified upconversion nanoparticles (DNA1-UCNPs) and complementary DNA modified metal organic frames (DNA2-MOFs), which possessed corresponding wavelength absorption.
View Article and Find Full Text PDFSelective enrichment of the highly active antioxidant peptides is required as the lack of an efficient method leads to long screening processes, hampering the research of antioxidant peptides. A simple synthetic metal-organic framework MIL-53 (Cr) was initially applied to extract specific antioxidant peptides from rice dreg protein hydrolysate. The highest active fraction was further purified by reversed-phase high-performance liquid chromatography.
View Article and Find Full Text PDFIn order to avoid the occurrence of false positives and false negatives caused by conventional enzyme-linked immunosorbent assay (ELISA), we established a novel indirect competitive MOF-linked immunosorbent assay (MOFLISA) method for the high throughput and high sensitive detection of aflatoxin B. This method replaces the natural enzyme with functional MOFs to catalyze a chromogenic system. As a result, the limit of detection (LOD) of the MOFLISA method was 0.
View Article and Find Full Text PDFPorphyrins have planar and conjugated structures, good optical properties, and other special functional properties. Owing to these excellent properties, in recent years, porphyrins and their analogues have emerged as a multifunctional platform for chemical sensors. The rich chemistry of these molecules offers many possibilities for metal ions detection.
View Article and Find Full Text PDFSelective liquid and gas adsorptions are important for environmental control and industrial processes. Here, unique porous lanthanide-organic frameworks of [Ln(1,3-pdta)(HO)] {Ln = La (), Ce (), Pr (), and Nd (), 1,3-pdta = CH[CHN(CHCOH)]} are template-synthesized by 1,2-ethylenediamine and fully characterized, which possess hydrophobic and hydrophilic open channels simultaneously. The skeletons are stable up to 200 °C.
View Article and Find Full Text PDFMIL-100(Fe, Cr) and MIL-101(Cr) were synthesized by the hydrothermal method and applied to the adsorptions of five aromatic amines from aqueous solutions. These three metal-organic frameworks (MOFs) were well characterized by powder X-ray diffraction (PXRD), scanning electron microscope (SEM), transmission electron microscope (TEM), thermogravimetric analysis (TGA) and surface area analysis. The adsorption mechanism of three MOFs and the effects of the structures of MOFs on the adsorption of aromatic amines were discussed.
View Article and Find Full Text PDFWater-soluble wheel-like icosanuclear peroxotitanate K[Ti(μ-O)(HO)(O)( R, R-tart)]·52HO (1) chelated by tartrate has been successfully isolated. As the largest peroxotitanate reported, {Ti} features 20 (hydro)peroxo groups with three kinds of coordination modes in μ-η:η, μ-η:η, and η fashions. The cluster is stable in solution and solid states.
View Article and Find Full Text PDFUnlike the most of α-alkoxy coordination in α-hydroxycarboxylates to vanadium, novel α-hydroxy coordination to vanadium(IV) has been observed for a series of chiral and achiral monomeric α-hydroxycarboxylato vanadyl complexes [VO(H2cit)(bpy)]·2H2O (1), [VO(Hmal)(bpy)]·H2O (2), [VO(H2cit)(phen)]·1.5H2O (3), [VO(Hmal)(phen)]·H2O (4), and [(Δ)VO(S-Hcitmal)(bpy)]·2H2O (5), [VO(H2cit)(phen)]2·6.5H2O (6), which were isolated from the reactions of vanadyl sulfate with α-hydroxycarboxylates and N-heterocycle ligands in acidic solution.
View Article and Find Full Text PDFFrom neutral solutions, dimeric 1,3-propanediaminetetraacetato lanthanides (NH4)2[Ln2(1,3-pdta)2(H2O)4]·8H2O [Ln = La, 1; Ce, 2] and K2[Ln2(1,3-pdta)2(H2O)4]·11H2O [Ln = La, 3; Ce, 4] (1,3-H4pdta = 1,3-propanediaminetetraacetic acid, C11H18N2O8) were isolated in high yields. The reaction of excess strontium nitrate with 1 resulted in the formation of a two dimensional coordination polymer [La2(1,3-pdta)2(H2O)4]n·[Sr2(H2O)6]n·[La2(1,3-pdta)2(H2O)2]n·18nH2O (5) at 70 °C. Complexes 1-4 show a similar central molecular structure.
View Article and Find Full Text PDFA new type of thermally stable chelate {La(H2O)4[La(1,3-pdta)(H2O)]3}n · 12nH2O (1) [1,3-H4pdtaCH2[CH2N(CH2CO2H)2]2] with an open-channel shows significant and unusual solvent transport properties and demonstrates a use for low-pressure desalination, which is constructed by cheap and available lanthanum salt and 1,3-propanediaminetetraacetate. The chelate could be converted reversibly to its trihydrate {La(H2O)4[La(1,3-pdta)(H2O)]3}n · 3nH2O (1a), dehydrated product {La(H2O)4[La(1,3-pdta)(H2O)]3}n (1b) and ethanol adduct {La(H2O)4[La(1,3-pdta)(H2O)]3}n · 3nH2O · 3nEtOH (1c). The latter nano-confined ethanol shows a remarkable downfield shift (Δδ = 6.
View Article and Find Full Text PDFIn neutral media, reactions of gadolinium ethylenediaminetetraacetates with phosphorous acid result in the formation of the mixed-ligand polymeric complex K3n[Gd(EDTA)(HPO3)]n·7nH2O () and dimeric complex Na6[Gd2(EDTA)2(HPO3)2]·2.5NaCl·21H2O () (H4EDTA = ethylenediaminetetraacetic acid) in warm solution. Further substitution with citric acid gives the monomeric gadolinium citrate with EDTA (NH4)2Na[Gd(EDTA)(H2cit)]·4H2O ().
View Article and Find Full Text PDFHighly water-soluble lanthanum and cerium citrates or malates with ethylenediaminetetraacetate (NH(4))(8)[Ln(2)(Hcit)(2)(EDTA)(2)]·9H(2)O [Ln = La, 1; Ce, 2], K(8)[La(2)(Hcit)(2)(EDTA)(2)]·16H(2)O (3) and K(6)[Ln(2)(Hmal)(2)(EDTA)(2)]·14H(2)O [Ln = La, 4; Ce, 5] (H(4)cit = citric acid, H(3)mal = malic acid, and H(4)EDTA = ethylenediaminetetracetic acid) were prepared from the reactions of lanthanide ethylenediaminetetraacetate trihydrates with citric or malic acid at pH 5.0-6.5.
View Article and Find Full Text PDF