Publications by authors named "Mao-Hui Yuan"

We reported the first observation of the two-photon-induced quantum cutting phenomenon in a Gd(3+)/Tb(3+)-codoped glass in which two photons at ~400 nm are simultaneously absorbed, leading to the cascade emission of three photons in the visible spectral region. The two-photon absorption induced by femtosecond laser pulses allows the excitation of the energy states in Gd(3+) which are inactive for single-photon excitation and enables the observation of many new electric transitions which are invisible in the single-photon-induced luminescence. The competition between the two-photon-induced photon cascade emission and the single-photon-induced emission was manipulated to control the luminescence color of the glass.

View Article and Find Full Text PDF

ZnO nanorods (NRs) self-organized into flowers were synthesized at different temperatures ranging from 100°C to 180°C by using the hydrothermal method. The existence of Zn interstitials (Zn(i)) was confirmed by X-ray photoelectron spectroscopy and a larger amount of Zn(i) was found in the ZnO NRs prepared at higher temperatures. A redshift of the emission peak of more than 15 nm was observed for the ZnO NRs under single photon excitation.

View Article and Find Full Text PDF

We report on the efficient blue light emission from In0.16Ga0.84N/GaN multiple quantum wells excited by femtosecond laser pulses with long wavelengths ranging from 1.

View Article and Find Full Text PDF

We investigated the second and third harmonic generation (SHG and THG) in ZnO nanorods (NRs) by using a femtosecond laser (optical parametric amplifier with tunable wavelengths) with a long excitation wavelength of 1350 nm and a low repetition rate of 1 kHz. The damage threshold for ZnO NRs in this case was sufficiently large, enabling us to observe the competition between SHG and THG. The transition from red to blue emission and the mixing of red and blue light with different ratios were successfully demonstrated by simply varying excitation intensity, implying the potential applications of ZnO NRs in all-optical display.

View Article and Find Full Text PDF