Background: Thrombopoietin (TPO) is a primary regulator of thrombopoiesis in physiological conditions. TPO, in combination with its specific cytokine receptor c-Mpl, drives platelet production by inducing the proliferation and differentiation of megakaryocytes. However, the role of TPO in sepsis is not well determined.
View Article and Find Full Text PDFCyclooxygenase (COX)-1, one of the critical enzymes required for the conversion of arachidonic acid to PGs, has been demonstrated to play an important role not only in the cardiovascular system but also in the immune system. COX-1 has been found to regulate early B cell differentiation, germinal center formation, and Ab production of B cells. However, the underlying mechanisms of COX-1-mediated B cell activation remains not fully understood.
View Article and Find Full Text PDFGlucocorticoids (GCs) used as inflammation suppressors have harmful side effects, including induction of hepatic steatosis. The underlying mechanisms of GC-promoted dysregulation of lipid metabolism, however, are not fully understood. GCs could facilitate the accumulation of myeloid-derived suppressor cells (MDSC) in the liver of animals, and the potential role of MDSCs in GC-induced hepatic steatosis was therefore investigated in this study.
View Article and Find Full Text PDFMaternal immune system tolerance to the semiallogeneic fetus is essential for a successful pregnancy; however, the mechanisms underlying this immunotolerance have not been fully elucidated. Here, we demonstrate that myeloid-derived suppressor cells play an important role in maintaining feto-maternal tolerance. A significant expansion of granulocytic myeloid-derived suppressor cells was observed in multiple immune organs and decidual tissues from pregnant mice.
View Article and Find Full Text PDF