We have investigated lead adsorption on different forms of nanostructured carbon, namely multiwall carbon nanotubes (MWCNT) and reduced graphene oxide (RGO) functionalized with different functional groups (hydroxyl, carboxyl, and amino groups). We found that the same functional group does not result in the same performance trends for different nanostructured carbons. Drastically different behavior was observed for the amino-group functionalization, where a significant improvement is observed for MWCNT, while worse performance compared to non-functionalized material is obtained for RGO.
View Article and Find Full Text PDFThe topological insulator/normal insulator (TI/NI) superlattices (SLs) with multiple Dirac channels are predicted to offer great opportunity to design novel materials and investigate new quantum phenomena. Here, we report first transport studies on the SLs composed of TI Bi2Se3 layers sandwiched by NI In2Se3 layers artificially grown by molecular beam epitaxy (MBE). The transport properties of two kinds of SL samples show convincing evidence that the transport dimensionality changes from three-dimensional (3D) to two-dimensional (2D) when decreasing the thickness of building block Bi2Se3 layers, corresponding to the crossover from coherent TI transport to separated TI channels.
View Article and Find Full Text PDF