Publications by authors named "Manzin A"

The COVID-19 pandemic, driven by the rapid evolution of the SARS-CoV-2 virus, presents ongoing challenges to global public health. SARS-CoV-2 is characterized by rapidly evolving mutations, especially in (but not limited to) the spike protein, complicating predictions about its evolutionary trajectory. These mutations have significantly affected transmissibility, immune evasion, and vaccine efficacy, leading to multiple pandemic waves with over half a billion cases and seven million deaths globally.

View Article and Find Full Text PDF

: Managing type 2 diabetes mellitus (T2DM) and obesity requires a multidimensional, patient-centered approach including nutritional interventions (NIs) and physical activity. Changes in the gut microbiota (GM) have been linked to obesity and the metabolic alterations typical of T2DM and obesity, and they are strongly influenced by diet. However, few studies have evaluated the effects on the GM of a very-low-calorie ketogenic diet (VLCKD) in patients with T2DM, especially in the mid-term and long-term.

View Article and Find Full Text PDF

Purpose: Here we describe a patient admitted for a stroke that was unexpectedly correlated with subclinical infective endocarditis attributable to a rarely opportunistic pathogen, Abiotrophia defectiva.

Case Report: A 75-year-old man presented with a stroke. Transesophageal echocardiography suggested vegetation on all aortic valve cusps, despite the absence of clinical or laboratory signs of infection.

View Article and Find Full Text PDF

The detection of magnetic nanoparticles in a liquid medium and the quantification of their concentration have the potential to improve the efficiency of several relevant applications in different fields, including medicine, environmental remediation, and mechanical engineering. To this end, sensors based on the magneto-impedance effect have attracted much attention due to their high sensitivity to the stray magnetic field generated by magnetic nanoparticles, their simple fabrication process, and their relatively low cost. To improve the sensitivity of these sensors, a multidisciplinary approach is required to study a wide range of soft magnetic materials as sensing elements and to customize the magnetic properties of nanoparticles.

View Article and Find Full Text PDF

Immunization against COVID-19 is needed in patients with immune-mediated inflammatory diseases (IMIDs). However, data on long-term immunity kinetics remain scarce. This study aimed to compare the humoral and cellular response to COVID-19 in patients with immune-mediated inflammatory diseases (IMIDs) compared to healthy controls.

View Article and Find Full Text PDF

Severe acute respiratory syndrome-related Coronavirus 2 (SARS-CoV-2) has infected more than 762 million people to date and has caused approximately 7 million deaths all around the world, involving more than 187 countries. Although currently available vaccines show high efficacy in preventing severe respiratory complications in infected patients, the high number of mutations in the S proteins of the current variants is responsible for the high level of immune evasion and transmissibility of the virus and the reduced effectiveness of acquired immunity. In this scenario, the development of safe and effective drugs of synthetic or natural origin to suppress viral replication and treat acute forms of COVID-19 remains a valid therapeutic challenge.

View Article and Find Full Text PDF

Treatment planning in magnetic hyperthermia requires a thorough knowledge of specific loss power of magnetic nanoparticles as a function of size and excitation conditions. Moreover, in biological tissues the magnetic nanoparticles can aggregate into clusters, making the evaluation of their heating performance more challenging because of the magnetostatic dipole-dipole interactions. In this paper, we present a comprehensive modelling analysis of 10-40 nm sized spherical magnetite (FeO) nanoparticles, investigating how their heating properties are influenced by magnetic field parameters (peak amplitude and frequency), and by volume concentration and aggregation state.

View Article and Find Full Text PDF

Drug resistance represents one of the great plagues of our time worldwide. This largely limits the treatment of common infections and requires the development of new antibiotics or other alternative approaches. Noteworthy, the indiscriminate use of antibiotics is mostly responsible for the selection of mutations that confer drug resistance to microbes.

View Article and Find Full Text PDF

Several countries have recommended a booster dose of Pfizer BNT162b2 vaccine for subjects under the age of 60, who have already received the first dose of ChAdOx1. This is due to several ChAdOx1 vaccine-associated adverse vascular events and thrombocytopenia. Neutralization assay and quantitative IgG anti-SARS-CoV-2 Spike antibody (anti-S-IgG) were conducted to investigate the long-term responses to vaccine treatment in a cohort of Sardinian participants, who have received heterologous Prime-Boost Vaccination via ChAdOx1 vector vaccine and a booster dose via BNT162b2.

View Article and Find Full Text PDF

Fusion is a key event for enveloped viruses, through which viral and cell membranes come into close contact. This event is mediated by viral fusion proteins, which are divided into three structural and functional classes. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein belongs to class I fusion proteins, characterized by a trimer of helical hairpins and an internal fusion peptide (FP), which is exposed once fusion occurs.

View Article and Find Full Text PDF

Purpose: The purpose of this study is to investigate the kinetics of response against SARS-CoV-2 elicited by vaccination and/or breakthrough infection (occurred after 3 doses of BNT162b2) in a cohort CVID patients.

Methods: We measured humoral and cellular immunity using quantitative anti-spike antibody (anti-S-IgG) and neutralization assay and specific interferon-gamma release assay (IGRA) before and after the third or fourth dose of BNT162b2 and/or after COVID-19.

Results: In CVID, 58.

View Article and Find Full Text PDF

Magnetic oxygen-loaded nanodroplets (MOLNDs) are a promising class of nanomaterials dually sensitive to ultrasound and magnetic fields, which can be employed as nanovectors for drug delivery applications, particularly in the field of hypoxic tissue treatment. Previous investigations were primarily focused on the application of these hybrid systems for hyperthermia treatment, exploiting magnetic nanoparticles for heat generation and nanodroplets as carriers and ultrasound contrast agents for treatment progress monitoring. This work places its emphasis on the prospect of obtaining an oxygen delivery system that can be activated by both ultrasound and magnetic fields.

View Article and Find Full Text PDF
Article Synopsis
  • SARS-CoV-2, responsible for COVID-19, poses a higher risk of severe illness for patients with hematological malignancies due to weakened immune systems.
  • A study of 106 hematology patients, mainly vaccinated with three or more doses, found 71% had adequate neutralizing antibodies against the original virus, while 82% did for the Omicron BA.1 variant.
  • Notably, patients with B-cell disorders or who received anti-CD20 treatments had significantly lower antibody responses, suggesting the need for continued protective measures for these high-risk individuals.
View Article and Find Full Text PDF

Pandemic and epidemic outbreaks of respiratory viruses are a challenge for public health and social care system worldwide, leading to high mortality and morbidity among the human populations. In light of the limited efficacy of current vaccines and antiviral drugs against respiratory viral infections and the emergence and re-emergence of new viruses, novel broad-spectrum antiviral drugs are needed for the prevention and treatment of these infections. Antimicrobial peptides with an antiviral effect, also known as AVPs, have already been reported as potent inhibitors of viral infections by affecting different stages of the virus lifecycle.

View Article and Find Full Text PDF

Parkinson's disease (PD) diagnosis is still vulnerable to bias, and a definitive diagnosis often relies on post-mortem neuropathological diagnosis. In this regard, alpha-synuclein (αsyn)-specific in vivo biomarkers remain a critical unmet need, based on its relevance in the neuropathology. Specifically, content changes in αsyn species such as total (tot-αsyn), oligomeric (o-αsyn), and phosphorylated (p-αsyn) within the cerebrospinal fluid (CSF) and peripheral fluids (i.

View Article and Find Full Text PDF

Abnormal deposition of α-synuclein is a key feature and biomarker of Parkinson's disease. α-Synuclein aggregates can propagate themselves by a prion-like seeding-based mechanism within and between tissues and are hypothesized to move between the intestine and brain. α-Synuclein RT-QuIC seed amplification assays have detected Parkinson's-associated α-synuclein in multiple biospecimens including post-mortem colon samples.

View Article and Find Full Text PDF

While hyperthermia has been shown to induce a variety of cytotoxic and sensitizing effects on cancer tissues, the thermal dose-effect relationship is still not well quantified, and it is still unclear how it can be optimally combined with other treatment modalities. Additionally, it is speculated that different methods of applying hyperthermia, such as water bath heating or electromagnetic energy, may have an effect on the resulting biological mechanisms involved in cell death or in sensitizing tumor cells to other oncological treatments. In order to further quantify and characterize hyperthermia treatments on a cellular level, in vitro experiments shifted towards the use of 3D cell spheroids.

View Article and Find Full Text PDF

Magnetic hyperthermia is an oncological therapy that exploits magnetic nanoparticles activated by radiofrequency magnetic fields to produce a controlled temperature increase in a diseased tissue. The specific loss power (SLP) of magnetic nanoparticles or the capability to release heat can be improved using surface treatments, which can reduce agglomeration effects, thus impacting on local magnetostatic interactions. In this work, FeO nanoparticles are synthesized via a coprecipitation reaction and fully characterized in terms of structural, morphological, dimensional, magnetic, and hyperthermia properties (under the Hergt-Dutz limit).

View Article and Find Full Text PDF

The early steps of viral infection involve protein complexes and structural lipid rearrangements which characterize the peculiar strategies of each virus to invade permissive host cells. Members of the human immune-related interferon-induced transmembrane (IFITM) protein family have been described as inhibitors of the entry of a broad range of viruses into the host cells. Recently, it has been shown that SARS-CoV-2 is able to hijack IFITM2 for efficient infection.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM), the most common form of diabetes, is a progressive chronic metabolic disease that has increasingly spread worldwide, enhancing the mortality rate, particularly from cardiovascular diseases (CVD). Lifestyle improvement through diet and physical activity is, together with drug treatment, the cornerstone of T2DM management. The Mediterranean diet (MD), which favors a prevalence of unprocessed vegetable foods and a reduction in red meats and industrial foods, without excluding any food category, is usually recommended.

View Article and Find Full Text PDF

The continuous and rapid spread of the COVID-19 pandemic has emphasized the need to seek new therapeutic and prophylactic treatments. Peptide inhibitors are a valid alternative approach for the treatment of emerging viral infections, mainly due to their low toxicity and high efficiency. Recently, two small nucleotide signatures were identified in the genome of some members of the family and many other human pathogens.

View Article and Find Full Text PDF

This paper aims at studying a sensor concept for possible integration in magnetic field-based lab-on-chip devices that exploit ferromagnetic resonance (FMR) phenomena in magnonic crystals. The focus is on 2D magnetic antidot arrays, i.e.

View Article and Find Full Text PDF

Infectious diseases caused by viruses like HIV and SARS-COV-2 (COVID-19) pose serious public health threats. In search for new antiviral small molecules from chemically underexplored species, a previously undescribed atropisomeric C8-C8' linked dimeric coumarin named bichromonol () was isolated from the stem bark of . The structure was elucidated by MS data and NMR spectroscopy.

View Article and Find Full Text PDF

Background And Objective: Magnetic hyperthermia is an oncological therapy that employs magnetic nanoparticles activated by alternating current (AC) magnetic fields with frequencies between 50 kHz and 1 MHz, to release heat in a diseased tissue and produce a local temperature increase of about 5 °C. To assess the treatment efficacy, in vivo tests on murine models (mice and rats) are typically performed. However, these are often carried out without satisfying the biophysical constraints on the electromagnetic (EM) field exposure, with consequent generation of hot spots and undesirable heating of healthy tissues.

View Article and Find Full Text PDF

This study was aimed at characterizing the gut microbiota (GM) and its functional profile in two groups of Sardinian subjects with a long healthy life expectancy, overall named Long-Lived Subjects (LLS) [17 centenarians (CENT) and 29 nonagenarians (NON)] by comparing them to 46 healthy younger controls (CTLs). In addition, the contribution of genetics and environmental factors to the GM phenotype was assessed by comparing a subgroup of seven centenarian parents (CPAR) with a paired cohort of centenarians' offspring (COFF). The analysis was performed through Next Generation Sequencing (NGS) of the V3 and V4 hypervariable region of the 16S rRNA gene on the MiSeq Illumina platform.

View Article and Find Full Text PDF