The initiation of DNA replication involves cell cycle-dependent assembly and disassembly of protein complexes, including the origin recognition complex (ORC) and CDC6 AAA ATPases. We report that multiple short linear protein motifs (SLiMs) within intrinsically disordered regions (IDRs) in ORC1 and CDC6 mediate cyclin-CDK-dependent and independent protein-protein interactions, conditional on the cell cycle phase. A domain within the ORC1 IDR is required for interaction between the ORC1 and CDC6 AAA domains in G1, whereas the same domain prevents CDC6-ORC1 interaction during mitosis.
View Article and Find Full Text PDFSAMHD1 is the major catabolic enzyme regulating the intracellular concentrations of DNA precursors (dNTPs). The S-phase kinase CDK2-cyclinA phosphorylates SAMHD1 at Thr-592. How this modification affects SAMHD1 function is highly debated.
View Article and Find Full Text PDFNewly born cells either continue to proliferate or exit the cell division cycle. This decision involves delaying expression of Cyclin E that promotes DNA replication. ORC1, the Origin Recognition Complex (ORC) large subunit, is inherited into newly born cells after it binds to condensing chromosomes during the preceding mitosis.
View Article and Find Full Text PDFReplication of eukaryotic chromosomes occurs once every cell division cycle in normal cells and is a tightly controlled process that ensures complete genome duplication. The origin recognition complex (ORC) plays a key role during the initiation of DNA replication. In human cells, the level of Orc1, the largest subunit of ORC, is regulated during the cell division cycle, and thus ORC is a dynamic complex.
View Article and Find Full Text PDFBackground: Splicing and alternate splicing are the two key biological processes that result in the generation of diverse transcript and protein isoforms in Plasmodium falciparum as well as in other eukaryotic organisms. Not much is known about the organization of splicing machinery and mechanisms in human malaria parasite. Present study reports the organization and assembly of Plasmodium spliceosome Sm core complex.
View Article and Find Full Text PDFLike DNA replication, centrosomes are licensed to duplicate once per cell division cycle to ensure genetic stability. In addition to regulating DNA replication, the Orc1 subunit of the human origin recognition complex controls centriole and centrosome copy number. Here we report that Orc1 harbors a PACT centrosome-targeting domain and a separate domain that differentially inhibits the protein kinase activities of Cyclin E-CDK2 and Cyclin A-CDK2.
View Article and Find Full Text PDFPlasmodium merozoite surface protein-1 (MSP-1) is an essential antigen for the merozoite invasion of erythrocytes. A key challenge to the development of an effective malaria vaccine that can block the erythrocyte invasion is to establish the molecular interaction(s) among the parasite surface proteins as well as with the host cell encoded receptors. In the present study, we applied molecular interactions and proteome approaches to identify PfMSP-1 associated complex on the merozoite surface.
View Article and Find Full Text PDFTudor Staphylococcal Nuclease (p100 or SND1), a member of the micronuclease family is a multifunctional protein that plays a key role(s) in transcription and splicing processes in many eukaryotic cells. PfTudor-SN, a Plasmodium homolog of the human p100 protein is a structurally conserved protein; however molecular details of its function are not yet understood. Our previous studies have shown that PfTudor-SN binds RNA and it is possible to selectively inhibit parasite growth by PfTudor-SN specific drugs.
View Article and Find Full Text PDFPlasmodium falciparum Tudor Staphylococcal Nuclease (PfTSN) has a multidomain organization and preferentially cleaves single stranded RNAs. PfTSN is quite distinct from its vertebrate homologues both in terms of its primary sequence and functional activity. Here, we analyzed the effect of PfTSN specific siRNA on parasite growth and development.
View Article and Find Full Text PDFRNA-binding proteins play key roles in post-transcriptional regulation of gene expression. In eukaryotic cells, a multitude of RNA-binding proteins with several RNA-binding domains/motifs have been described. Here, we show the existence of two Tudor domain containing proteins, a survival of motor neuron (SMN)-like protein and a Staphylococcus aureus nuclease homologue referred to as TSN, in Plasmodium and other protozoan parasites.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2005
The process of merozoite release in Plasmodium falciparum involves rupture of the parasitophorous vacuole membrane and erythrocyte plasma membrane. Through the use of protease inhibitors that halt the merozoite release, a number of parasite proteases, especially serine, aspartic, and cysteine proteases, have been implicated in the schizont rupture. To understand the precise role of cysteine proteases in the merozoite release, in the present study, we treated P.
View Article and Find Full Text PDF