Publications by authors named "Manyue Zhang"

Traditional Chinese medicine (TCM) is often composed of a variety of natural medicines. Its composition is complex, and many of its components can not be analyzed and identified. The first step in the rational application of TCM is to successfully separate the effective components which is also a great inspiration for the development of new drugs.

View Article and Find Full Text PDF

Microneedle (MN) systems for painless transdermal drug delivery have been well developed over the past few years to overcome the problems of subcutaneous injections. Hyaluronic acid (HA) is a glycosaminoglycan that exists widely in living organisms, and chitosan (CS) is the only basic polysaccharide among natural polysaccharides, both of which have good biodegradability. Molybdenum sulfide (MoS) is a typical layered transition metal disulfide with a two-dimensional structure and many unique physicochemical properties.

View Article and Find Full Text PDF

With the increasing prevalence of drug-resistant bacterial infections and frequent occurrences of slow wound healing, the development of novel antibacterial wound dressings has become a serious challenge. Hydrogel dressings have attracted extensive attention on wound healing due to their unique three-dimensional network structures and properties. However, it is a challenge to develop natural long-acting antibacterial hydrogels with multiple functions such as excellent cell affinity, wet adhesion and mechanical properties.

View Article and Find Full Text PDF

The loss of tissues and organs is a major challenge for biomedicine, and the emerging 3D bioprinting technology has brought the dawn for the development of tissue engineering and regenerative medicine. Chitosan-based supramolecular hydrogels, as novel biomaterials, are considered as ideal materials for 3D bioprinting due to their unique dynamic reversibility and fantastic biological properties. Although chitosan-based supramolecular hydrogels have wonderful biological properties, the mechanical properties are still under early exploration.

View Article and Find Full Text PDF

Melanoma is an aggressive malignancy deriving from melanocytes, which is characterized by high tendency of metastases and mortality rate. Current therapies for melanoma, like chemotherapy, immunotherapy and targeted therapy, have the problem of systemic exposure of drugs, which will lead to many side effects and premature degradation of drugs. The resulting low drug accumulation at the lesion limits the therapeutic effect on melanoma and makes the cure rate low.

View Article and Find Full Text PDF

The chitosan-modified biochar composite, as a carbohydrate polymer, has received increasing attention and becomes a research hotspot. It is a promising impurity adsorption material, which has potential application value in the agricultural environment fields such as soil improvement and sewage purification. The composite can combine the advantages of biochar with chitosan, and the resulting composite usually exhibits a great improvement in its surface functional groups, adsorption sites, stability, and adsorption properties.

View Article and Find Full Text PDF

Interstitial skin fluid (ISF) is an emerging alternative source of blood samples that has attracted great interest from researchers. It is a very promising way to use microneedle patches for extracting ISF. However, the recovery of ISF still faces great challenges, such as long extraction time and low extraction volume, which may affect the analysis of biomarkers.

View Article and Find Full Text PDF

Many biomarkers for early diagnosis of cancer and other diseases are difficult to detect because they often exist in body fluids in very low concentrations and are masked by high-abundance proteins such as albumin and immunoglobulins. At the same time, water pollution is one of the most serious environmental problems, but the existing adsorption materials have many shortcomings such as slow kinetics, small adsorption capacity and low adsorption efficiency. Nanotraps, mixed with gases or liquids, can capture and concentrate target substances, such as biomolecules, metal ions and oxoanions.

View Article and Find Full Text PDF

With the rapid development of nanotechnology, organelle-targeted nano drug delivery systems (NDDSs) have emerged as a potential method which can transport drugs specifically to the subcellular compartments like nucleus, mitochondrion, lysosome, endoplasmic reticulum (ER) and Golgi apparatus (GA). GA not only plays a key role in receiving, modifying, packaging and transporting proteins and lipids, but also contributes to a set of cellular processes. Golgi-targeted NDDSs can alter the morphology of GA and will become a promising strategy with high specificity, low-dose administration and decreased occurrence of side effects.

View Article and Find Full Text PDF