Publications by authors named "Manyuan Bai"

Foot-and-mouth disease virus (FMDV), a member of picornavirus, can enter into host cell via macropinocytosis. Although it is known that receptor tyrosine kinases (RTKs) play a crucial role in FMDV macropinocytic entry, the specific RTK responsible for regulating this process and the intricacies of RTK-mediated downstream signaling remain to be elucidated. Here, we conducted a screening of RTK inhibitors to assess their efficacy against FMDV.

View Article and Find Full Text PDF

Inactivated vaccines lack the capability to serologically differentiate between infected and vaccinated animals, thereby impeding the effective eradication of pathogen. Conversely, vaccines based on virus-like particles (VLPs) emulate natural viruses in both size and antigenic structure, presenting a promising alternative to overcome these limitations. As the complexity of swine infectious diseases increases, the increase of vaccine types and doses may intensify the stress response.

View Article and Find Full Text PDF

Vacuolar protein sorting 28 (Vps28), a component of the ESCRT-I (endosomal sorting complex required for transport I), plays an important role in the pathogen life cycle. Here, we investigated the reciprocal regulation between Vps28 and the foot-and-mouth disease virus (FMDV). Overexpression of Vps28 decreased FMDV replication.

View Article and Find Full Text PDF

Introduction: Foot-and-mouth disease virus (FMDV) infects the host by invading mucosal epithelial cells of the respiratory or digestive tract. Therefore, establishing a specific antiviral mucosal immune barrier can effectively block viral invasion.

Methods: We evaluated local mucosal and systemic immune responses elicited by intranasal immunization of mice with foot-and-mouth disease (FMD) calcium phosphate mineralized virus-like particles (CaP-VLPs) and tested whether three commercial mucosal adjuvants enhanced the immunogenicity of the antigen.

View Article and Find Full Text PDF

Virus-like particle (VLPs) vaccines have been extensively studied due to their good immunogenicity and safety; however, they highly rely on cold-chain storage and transportation. Nanotechnology of bio-mineralization as a useful strategy has been employed to improve the thermal stability and immunogenicity of VLPs. A zeolitic imidazole framework (ZIF-8), a core-shell structured nanocomposite, was applied to encapsulate foot-and-mouth disease virus (FMDV) VLPs.

View Article and Find Full Text PDF

Foot-and-mouth disease (FMD) is the highly contagious disease of cloven-hoofed animal that brings considerable economic losses to the animal husbandry. So FMD surveillance which relying on accurate diagnosis is important. Most producing the diagnostic antigen of inactivated FMD virus (FMDV) requires facilities with high biosafety.

View Article and Find Full Text PDF

In cells, the contributions of DEAD-box helicases (DDXs), without which cellular life is impossible, are of utmost importance. The extremely diverse roles of the nucleolar helicase DDX21, ranging from fundamental cellular processes such as cell growth, ribosome biogenesis, protein translation, protein-protein interaction, mediating and sensing transcription, and gene regulation to viral manipulation, drew our attention. We designed this project to study virus-host interactions and viral pathogenesis.

View Article and Find Full Text PDF

In addition to ribosomal protein synthesis and protein translation, ribosomal proteins also participate in tumorigenesis and tumor progression, immune responses, and viral replication. Here, we show that ribosomal protein L13 (RPL13) participates in the antiviral immune response induced by foot-and-mouth disease virus (FMDV), inhibiting FMDV replication. The overexpression of RPL13 promoted the induction and activation of the promoters of the nuclear factor-κB (NF-κB) and interferon-β (IFN-β) genes, and the expression and protein secretion of the antiviral factor IFN-β and proinflammatory cytokine interleukin-6 (IL-6).

View Article and Find Full Text PDF

Virus-like particles (VLPs) are high-priority antigens with highly ordered repetitive structures, which are similar to natural viral particles. We have developed a competitive enzyme-linked immunosorbent assay (cELISA) for detecting antibodies directed against Senecavirus A (SVA). Our assay utilizes SVA VLPs that were expressed and assembled in an E.

View Article and Find Full Text PDF

DEAD-box helicase 23 (DDX23) is a host nuclear helicase, which is a part of the spliceosomal complex and involved in pre-mRNA splicing. To investigate whether DDX23, an internal ribosomal entry sites transacting factor (ITAF) affects foot-and-mouth disease virus (FMDV) replication and translation through internal ribosome entry site (IRES)-dependent manner. For this, we utilized a pull-down assay, Western blotting, quantitative real-time PCR, confocal microscopy, overexpression and small interfering RNA knockdown, as well as the median tissue culture infective dose.

View Article and Find Full Text PDF

Senecavirus A (SVA) is the pathogen that has recently caused porcine idiopathic vesicular disease (PIVD). The clinical symptoms of PIVD are similar to those of acute foot-and-mouth disease and also can result in the death of newborn piglets, thus entailing economic losses. Vaccine immunization is the most effective way to prevent and control SVA.

View Article and Find Full Text PDF

Foot-and-mouth disease (FMD) is a highly contagious disease that affects all susceptible cloven-hoofed animals, resulting in considerable economic losses to animal industries worldwide. Numerous categories of enzyme-linked immunosorbent assays (ELISA) have been developed and widely used to evaluate herd immunity. Manufacturing inactivated FMD virus (FMDV) as a diagnostic antigen requires a facility with a high level of biosafety, but this requirement raises concern on viral leakage.

View Article and Find Full Text PDF

Foot-and-mouth disease (FMD) is an acute and febrile infectious disease, which can cause great economic losses. Virus-like particles (VLPs) as an advantageous antigen can induce significant specific immune response. To improve immunity of VLPs, especially, make it induce persistent immune response, the hollow mesoporous silica nanoparticles (HMSNs) as a potential nano-adjuvant were synthesized and loaded the FMD virus (FMDV) VLPs.

View Article and Find Full Text PDF