Publications by authors named "Manwen Liu"

In this study, a controllable equal-gap large-area silicon drift detector (L-SDD) is designed. The surface leakage current is reduced by reducing the SiO-Si interface through the new controllable equal-gap design. The design of the equal gap also solves the problem whereby the gap widens due to the larger detector size in the previous SDD design, which leads to a large invalid area of the detector.

View Article and Find Full Text PDF

In our previous studies, the silicon drift detector (SDD) structure with a constant spiral ring cathode gap (g) and a given surface electric field has been partially investigated based on the physical model that gives an analytical solution to the integrals in the calculations. Those results show that the detector has excellent electrical characteristics with a very homogeneous carrier drift electric field. In order to cope with the implementation of the theoretical approach with a complete set of technical parameters, this paper performs different theoretical algorithms for the technical implementation of the detector performance using the Taylor expansion method to construct a model for cases where the parameter "" is a non-integer, approximating the solution with finite terms.

View Article and Find Full Text PDF

A new type of 3D electrode detector, named here as the Implanted-Epi Silicon 3D-Spherical Electrode Detector, is proposed in this work. Epitaxial and ion implantation processes can be used in this new detector, allowing bowl-shaped electrodes to penetrate the silicon completely. The distance between the bowl cathode and the central collection electrode is basically the same, thus the total depletion voltage of Implanted-Epi Silicon 3D-Spherical Electrode Detectors is no longer directively correlated with the thickness of the silicon wafer, but only related to the electrode spacing.

View Article and Find Full Text PDF

Since the advent of semiconductor detectors, they have been developed for several generations, and their performance has been continuously improved. In this paper, we propose a new silicon drift detector structure that is different from the traditional spiral SDD structure that has a gap between the cathode ring and the width of cathode ring, increasing gradually with the increase of the radius of the cathode ring. Our new structure of spiral SDD structure has equal cathode ring gap and a given surface electric field, which has many advantages compared with the traditional structure.

View Article and Find Full Text PDF

The theoretical basis of a hypothetical spherical electrode detector was investigated in our previous work. It was found that the proposed detector has very good electrical characteristics, such as greatly reduced full depletion voltage, small capacitance and ultra-fast collection time. However, due to the limitations of current technology, spherical electrode detectors cannot be made.

View Article and Find Full Text PDF

The 3D electrode silicon detector eliminates the limit of chip thickness, so it can reduce the electrode spacing (small area) and effectively improve the radiation hardness. In order to expand the application range of the 3D electrode detector, we first propose a 3D large-area silicon detector with a large sensitive volume, and realize multiple floating rings on the upper and lower surfaces of the detector. Due to the influence of different charge states and energy levels in the Si-SiO interface system, the top and bottom of the 3D P+ electrode are more prone to avalanche breakdown in the 3D large-area detector before the detector is completely depleted or the carrier saturation drift velocity is reached.

View Article and Find Full Text PDF

Silicon avalanche photodetector (APD) plays a very important role in near-infrared light detection due to its linear controllable gain and attractive manufacturing cost. In this paper, a silicon APD with punch-through structure is designed and fabricated by standard 0.5 μm complementary metal oxide semiconductor (CMOS) technology.

View Article and Find Full Text PDF

The radiation fluence of high luminosity LHC (HL-LHC) is predicted up to 1 × 10 1 MeV n/cm in the ATLAS and CMS experiments for the pixel detectors at the innermost layers. The increased radiation leads to the degradation of the detector properties, such as increased leakage current and full depletion voltage, and reduced signals and charge collection efficiency, which means it is necessary to develop the radiation hard semiconductor devices for very high luminosity colliders. In our previous study about ultra-fast 3D-trench electrode silicon detectors, through induced transient current simulation with different minimum ionizing particle (MIP) hitting positions, the ultra-fast response times ranging from 30 ps to 140 ps were verified.

View Article and Find Full Text PDF

Resistance to phosphine fumigation has been frequently reported in insect pests of stored products and remains one of the obstacles in controlling these pests, including Tribolium castaneum. In this study, six field populations of T. castaneum were collected from different localities in China.

View Article and Find Full Text PDF

In our previous work on ultra-fast silicon detectors, extremely small carrier drift times of 50-100 picoseconds were predicted for electrode spacing of 5-10 μm. Expanding on these previous works, we systematically study the electrical characteristics of the ultra-fast, 3D-trench electrode silicon detector cell with p-type bulk silicon, such as electric potential distribution, electric field distribution, hole concentration distribution, and leakage current to analyze the full detector depletion voltage and other detector properties. To verify the prediction of ultra-fast response times, we simulate the instant induced current curves before and after irradiation with different minimum ionizing particle (MIP) hitting positions.

View Article and Find Full Text PDF