Herpesviruses are DNA viruses and the cause of diseases ranging from mild skin conditions to severe brain diseases. Mammalian antiviral host defense comprises an array of mechanisms, including restriction factors (RFs), which block specific steps in viral replication cycles. In recent years, knowledge of RFs that contribute to controlling herpesvirus infections has expanded significantly, along with a new understanding of viral evasion mechanisms and disease pathogenesis.
View Article and Find Full Text PDFPattern recognition receptors (PRRs) induce host defense but can also induce exacerbated inflammatory responses. This raises the question of whether other mechanisms are also involved in early host defense. Using transcriptome analysis of disrupted transcripts in herpes simplex virus (HSV)-infected cells, we find that HSV infection disrupts the hypoxia-inducible factor (HIF) transcription network in neurons and epithelial cells.
View Article and Find Full Text PDFThe highly prevalent herpes simplex virus type 1 (HSV-1) causes a range of diseases, including cold sores, blinding keratitis, and life-threatening encephalitis. HSV-1 initially replicates in epithelial cells, enters the peripheral nervous system via neurites, and establishes lifelong infection in the neuronal cell bodies. Neurites are highly dynamic structures that grow or retract in response to attractive or repulsive cues, respectively.
View Article and Find Full Text PDFCurr Opin Virol
October 2023
Microtubule transport and nuclear import are functionally connected, and the nuclear pore complex (NPC) can interact with microtubule motors. For several alphaherpesvirus proteins, nuclear localization signals (NLSs) and their interactions with specific importin-α proteins have been characterized. Here, we review recent insights on the roles of microtubule motors, capsid-associated NLSs, and importin-α proteins for capsid transport, capsid docking to NPCs, and genome release into the nucleoplasm, as well as the role of importins for nuclear viral transcription, replication, capsid assembly, genome packaging, and nuclear capsid egress.
View Article and Find Full Text PDFHost proteins sense viral products and induce defence mechanisms, particularly in immune cells. Using cell-free assays and quantitative mass spectrometry, we determined the interactome of capsid-host protein complexes of herpes simplex virus and identified the large dynamin-like GTPase myxovirus resistance protein B (MxB) as an interferon-inducible protein interacting with capsids. Electron microscopy analyses showed that cytosols containing MxB had the remarkable capability to disassemble the icosahedral capsids of herpes simplex viruses and varicella zoster virus into flat sheets of connected triangular faces.
View Article and Find Full Text PDFStarting a herpesviral infection is a steeplechase across membranes, cytosol, and nuclear envelopes and against antiviral defence mechanisms. Here, we highlight recent insights on capsid stabilization at the portals during assembly, early capsid-host interactions ensuring nuclear targeting of incoming capsids, and genome uncoating. After fusion with a host membrane, incoming capsids recruit microtubule motors for traveling to the centrosome, and by unknown mechanisms get forward towards the nucleus.
View Article and Find Full Text PDFIn the present study we showed that HIV-1 Tat protein stimulated the expression of Indoleamine 2,3 dioxygenase (IDO) -1 in human monocytes derived dendritic cells (MoDC) but not IDO-2 by acting directly at the cell membrane level. This induction of IDO-1 is dependent on the secondary structure of Tat protein, since stimulation with a chemically oxidized Tat protein loses its capacity to induce the production of IDO-1. Among the variety of candidate receptors described for Tat, we demonstrated that Tat protein interacted physically with TLR4/MD2 complex.
View Article and Find Full Text PDFThe trimeric heptad repeat domains HR1 and HR2 of the human immunodeficiency virus 1 (HIV-1) gp41 play a key role in HIV-1-entry by membrane fusion. To develop efficient inhibitors against this step, the corresponding trimeric-N36 and C34 peptides were designed and synthesized. Analysis by circular dichroism of monomeric and trimeric N36 and C34 peptides showed their capacities to adopt α-helical structures and to establish physical interactions.
View Article and Find Full Text PDFHuman HIV-1 infection leads inevitably to a chronic hyper-immune-activation. However, the nature of the targeted receptors and the pathways involved remain to be fully elucidated. We demonstrate that X4-tropic gp120 induced the production of TNF-α and IL-10 by monocytes through activation of a cell membrane receptor, distinct from the CD4, CXCR4, and MR receptors.
View Article and Find Full Text PDFHIV-1 Tat protein induces the production of CXCL8 chemokine in a TLR4/MD2 and PKC dependent manner. The objective of this study was to understand whether these two pathways were distinct or constituted a single common pathway, and to determine the nature of the PKC isoforms involved and their interrelation with the activation of NF-κB and CXCL8 gene product expression. Here, we show that Tat-induced CXCL8 production is essentially dependent on the activation of PKC delta isoform, as shown a) by the capacity of PKC delta dominant negative (DN), and Rottlerin, a selective PKC delta pharmacological inhibitor, to inhibit Tat-induced CXCL8 production and b) by the ability of the constitutively active (CAT) isoform of PKC delta to induce CXCL8 production in a HEK cell line in the absence of Tat stimulation.
View Article and Find Full Text PDFUnlabelled: In this study, we show that the HIV-1 Tat protein interacts with rapid kinetics to engage the Toll-like receptor 4 (TLR4) pathway, leading to the production of proinflammatory and anti-inflammatory cytokines. The pretreatment of human monocytes with Tat protein for 10 to 30 min suffices to irreversibly engage the activation of the TLR4 pathway, leading to the production of tumor necrosis factor alpha (TNF-α) and interleukin-10 (IL-10), two cytokines strongly implicated in the chronic activation and dysregulation of the immune system during HIV-1 infection. Therefore, this study analyzed whether the HIV-1 Tat protein is able to activate these two pathways separately or simultaneously.
View Article and Find Full Text PDFWe recently reported that the human immunodeficiency virus type-1 (HIV-1) Tat protein induced the expression of programmed death ligand-1 (PD-L1) on dendritic cells (DCs) through a TLR4 pathway. However, the underlying mechanisms by which HIV-1 Tat protein induces the abnormal hyper-activation of the immune system seen in HIV-1 infected patients remain to be fully elucidated. In the present study, we report that HIV-1 Tat protein induced the production of significant amounts of the pro-inflammatory IL-6 and IL-8 cytokines by DCs and monocytes from both healthy and HIV-1 infected patients.
View Article and Find Full Text PDF