Left-right patterning disturbance can cause severe birth defects, but it remains least understood of the three body axes. We uncovered an unexpected role for metabolic regulation in left-right patterning. Analysis of the first spatial transcriptome profile of left-right patterning revealed global activation of glycolysis, accompanied by right-sided expression of and genes regulating insulin growth factor signaling.
View Article and Find Full Text PDFNon-alcoholic fatty liver disease (NAFLD) has a high global prevalence with a heterogeneous and complex pathophysiology that presents barriers to traditional targeted therapeutic approaches. We describe an integrated quantitative systems pharmacology (QSP) platform that comprehensively and unbiasedly defines disease states, in contrast to just individual genes or pathways, that promote NAFLD progression. The QSP platform can be used to predict drugs that normalize these disease states and experimentally test predictions in a human liver acinus microphysiology system (LAMPS) that recapitulates key aspects of NAFLD.
View Article and Find Full Text PDFMetabolic syndrome is a complex disease that involves multiple organ systems including a critical role for the liver. Non-alcoholic fatty liver disease (NAFLD) is a key component of the metabolic syndrome and fatty liver is linked to a range of metabolic dysfunctions that occur in approximately 25% of the population. A panel of experts recently agreed that the acronym, NAFLD, did not properly characterize this heterogeneous disease given the associated metabolic abnormalities such as type 2 diabetes mellitus (T2D), obesity, and hypertension.
View Article and Find Full Text PDFEstablishing left-right asymmetry is a fundamental process essential for arrangement of visceral organs during development. In vertebrates, motile cilia-driven fluid flow in the left-right organizer (LRO) is essential for initiating symmetry breaking event. Here, we report that myosin 1d (myo1d) is essential for establishing left-right asymmetry in zebrafish.
View Article and Find Full Text PDFZebrafish is the preferred vertebrate model for high throughput chemical screens to discover modulators of complex biological pathways. We adapted a transgenic zebrafish line, , which reports on fibroblast growth factor (Fgf)/Ras/Mapk activity, into a quantitative, high-content chemical screen to identify novel Fgf hyperactivators as chemical probes for zebrafish heart development and regeneration. We screened 10,000 compounds from the TimTec ActiProbe library, and identified several structurally distinct classes of molecules that enhanced Fgf/Ras/Mapk signaling.
View Article and Find Full Text PDFZebrafish regenerate cardiac tissue through proliferation of pre-existing cardiomyocytes and neovascularization. Secreted growth factors such as FGFs, IGF, PDGFs and Neuregulin play essential roles in stimulating cardiomyocyte proliferation. These factors activate the Ras/MAPK pathway, which is tightly controlled by the feedback attenuator Dual specificity phosphatase 6 (Dusp6), an ERK phosphatase.
View Article and Find Full Text PDFZebrafish are increasingly used to perform phenotypic screens to identify agents that can alter physiology in a whole organismal context. Here, we describe an automated high-content chemical screen using transgenic zebrafish embryos to identify small molecules that modulate Fibroblast Growth Factor Signaling. High content multi-well screening was further refined with a particular emphasis on automated imaging and quantification that increases sensitivity and throughput of whole organism chemical screens.
View Article and Find Full Text PDFHeterotaxy, a birth defect involving left-right patterning defects, and primary ciliary dyskinesia (PCD), a sinopulmonary disease with dyskinetic/immotile cilia in the airway are seemingly disparate diseases. However, they have an overlapping genetic etiology involving mutations in cilia genes, a reflection of the common requirement for motile cilia in left-right patterning and airway clearance. While PCD is a monogenic recessive disorder, heterotaxy has a more complex, largely non-monogenic etiology.
View Article and Find Full Text PDFDual specificity phosphatase 6 (DUSP6) functions as a feedback attenuator of fibroblast growth factor signaling during development. In vitro high throughput chemical screening attempts to discover DUSP6 inhibitors have yielded limited success. However, in vivo whole-organism screens of zebrafish identified compound 1 (BCI) as an allosteric inhibitor of DUSP6.
View Article and Find Full Text PDFBirth Defects Res C Embryo Today
September 2011
Zebrafish have become an invaluable vertebrate animal model to interrogate small molecule libraries for modulators of complex biological pathways and phenotypes. We have recently described the implementation of a quantitative, high-content imaging assay in multi-well plates to analyze the effects of small molecules on Fibroblast Growth Factor (FGF) signaling in vivo. Here we have evaluated the capability of the assay to identify compounds that hyperactivate FGF signaling from a test cassette of agents with known biological activities.
View Article and Find Full Text PDFSignal transducer and activator of transcription-3 (STAT-3) is constitutively activated in ovarian and endometrial cancers and is implicated in uncontrolled cell growth. Thus, its disruption could be an effective approach to control tumorigenesis. Curcumin is a dihydroxyphenolic compound, with proven anti-cancer efficacy in various cancer models.
View Article and Find Full Text PDF