Pseudechis australis is one of the most venomous and lethal snakes in Australia. Numerous phospholipase A2 (PLA2) isoforms constitute a major portion of its venom, some of which have previously been shown to exhibit not only enzymatic, but also haemolytic, neurotoxic and anticoagulant activities. Here, we have purified a potent anticoagulant PLA2 (identified as PA11) from P.
View Article and Find Full Text PDFSnake venoms contain a complex mixture of polypeptides that modulate prey homeostatic mechanisms through highly specific and targeted interactions. In this study we have identified and characterised cystatin-like cysteine-protease inhibitors from elapid snake venoms for the first time. Novel cystatin sequences were cloned from 12 of 13 elapid snake venom glands and the protein was detected, albeit at very low levels, in a total of 22 venoms.
View Article and Find Full Text PDFC-type lectins are calcium-dependent sugar binding proteins and are distributed ubiquitously amongst vertebrate organisms. As part of a wider study on Australian snake venom components, we have identified and characterised a C-type lectin from the venom of Oxyuranus scutellatus (Australian coastal taipan) with mannose-binding activity. This protein exhibited a subunit molecular mass of 15 kDa and was found to bind mannose and also bind to and agglutinate erythrocytes in a Ca(2+)-dependent manner.
View Article and Find Full Text PDFBackground: Obtaining a suitable specimen for analysis in a timely manner is pivotal in clinical chemistry service provision. Serum is recognized as the preferred specimen for most assays, but because of time constraints for completion of clotting and an increasing number of patients on anti-coagulant therapy, latent clotting or no clotting is an outcome which can lead to errors and delay in delivery of critical results. Although lithium heparin plasma has unique problems, it has become an alternative in hospital-based laboratories.
View Article and Find Full Text PDFTextilinin-1 is a Kunitz-type serine protease inhibitor isolated from the venom of the Australian common brown snake, Pseudonaja textilis. This molecule binds to and blocks the activity of a range of serine proteases, including plasmin and trypsin. Textilinin-1's ability to inhibit plasmin, a protease involved in fibrinolysis, has raised the possibility that it could be used as an alternative to aprotinin (Trasylol) as a systemic antibleeding agent in surgery.
View Article and Find Full Text PDFCyclotides are cyclic disulfide rich mini-proteins found in various Rubiaceae (coffee family), Violaceae (violet family) and Cucurbitaceae (squash family) plant species. Within the Violaceae, cyclotides have been found in numerous species of the genus Viola as well as species from two other genera, namely Hybanthus and Leonia. This is the first in-depth report of cyclotides in the genus Melicytus (Violaceae).
View Article and Find Full Text PDFAprotinin has been used widely in surgery as an anti-bleeding agent but is associated with a number of side effects. We report that textilinin-1, a serine protease inhibitor from Pseudonaja textilis venom with sequence relatedness to aprotinin, is a potent but reversible plasmin inhibitor and has a narrower range of protease inhibition compared to aprotinin. Like aprotinin, textilinin-1 at 5 micromol/l gave almost complete inhibition of tissue plasminogen activator-induced fibrinolysis of whole blood clots.
View Article and Find Full Text PDFCyclotides are disulfide-rich miniproteins with the unique structural features of a circular backbone and knotted arrangement of three conserved disulfide bonds. Cyclotides have been found only in two plant families: in every analyzed species of the violet family (Violaceae) and in few species of the coffee family (Rubiaceae). In this study, we analyzed >200 Rubiaceae species and confirmed the presence of cyclotides in 22 species.
View Article and Find Full Text PDFTextilinin-1 (Q8008) was isolated from the venom of the Pseudonaja textilis and has a 47% sequence identity to the antihaemorrhagic therapeutic agent aprotinin. When equimolar concentrations of enzyme and aprotinin were pre-incubated, plasmin was inhibited 100%, plasma kallikrein 58%, and tissue kallikrein 99%. Under the same conditions, textilinin-1 inhibited plasmin 98%, plasma kallikrein 16% and tissue kallikrein 17%.
View Article and Find Full Text PDFCurr Protein Pept Sci
October 2004
The cyclotides are a family of small disulfide rich proteins that have a cyclic peptide backbone and a cystine knot formed by three conserved disulfide bonds. The combination of these two structural motifs contributes to the exceptional chemical, thermal and enzymatic stability of the cyclotides, which retain bioactivity after boiling. They were initially discovered based on native medicine or screening studies associated with some of their various activities, which include uterotonic action, anti-HIV activity, neurotensin antagonism, and cytotoxicity.
View Article and Find Full Text PDFThe plant cyclotides are a family of 28 to 37 amino acid miniproteins characterized by their head-to-tail cyclized peptide backbone and six absolutely conserved Cys residues arranged in a cystine knot motif: two disulfide bonds and the connecting backbone segments form a loop that is penetrated by the third disulfide bond. This knotted disulfide arrangement, together with the cyclic peptide backbone, renders the cyclotides extremely stable against enzymatic digest as well as thermal degradation, making them interesting targets for both pharmaceutical and agrochemical applications. We have examined the expression patterns of these fascinating peptides in various Viola species (Violaceae).
View Article and Find Full Text PDFCyclotides, a family of approximately 50 mini-proteins isolated from various Violaceae and Rubiaceae plants, are characterized by their circular peptide backbone and six conserved cysteine residues arranged in a cystine knot motif. Cyclotides show a wide range of biological activities, making them interesting targets for both pharmaceutical and agrochemical research, but little is known about their natural function and the events that trigger their expression. An investigation of the geographical and seasonal variations of cyclotide profiles has been performed, using the native Australian violet, Viola hederacea, and the Swedish sweet violet, Viola odorata, as model plants.
View Article and Find Full Text PDFThe effects of a mammalian cyclic antimicrobial peptide, rhesus theta defensin 1 (RTD-1) and its open chain analogue (oRTD-1), on the phase behaviour and structure of model membrane systems (dipalmitoyl phosphatidylcholine, DPPC and dipalmitoyl phosphatidylglycerol, DPPG) were studied. The increased selectivity of RTD-1 for anionic DPPG over zwitterionic DPPC was shown by differential scanning calorimetry. RTD-1, at a molar peptide-lipid ratio of 1:100, induced considerable changes in the phase behaviour of DPPG, but not of DPPC.
View Article and Find Full Text PDFThe recently discovered cyclotides kalata B1 and kalata B2 are miniproteins containing a head-to-tail cyclized backbone and a cystine knot motif, in which disulfide bonds and the connecting backbone segments form a ring that is penetrated by the third disulfide bond. This arrangement renders the cyclotides extremely stable against thermal and enzymatic decay, making them a possible template onto which functionalities can be grafted. We have compared the hydrodynamic properties of two prototypic cyclotides, kalata B1 and kalata B2, using analytical ultracentrifugation techniques.
View Article and Find Full Text PDFCircular proteins are a recently discovered phenomenon. They presumably evolved to confer advantages over ancestral linear proteins while maintaining the intrinsic biological functions of those proteins. In general, these advantages include a reduced sensitivity to proteolytic cleavage and enhanced stability.
View Article and Find Full Text PDF